Keras TensorBoard visulize Conv Kernels












1















I am using Keras with TensorFlow as backend.
Now i want to use the TensorBoard callback to visualize my conv layer kernels.
But i can only see the first conv layer kernel in TensorBoard and my Dense layers at the end.
For the other conv layers i can just the the bias values and not the kernels.



Here is my sample code for the Keras model.



tb = TensorBoard(
log_dir=log_dir,
histogram_freq=epochs,
write_images=True)

# Define the DNN
model = Sequential()
model.add(Conv2D(filters=16, kernel_size=3, input_shape=(width, height, depth), name="conv1"))
model.add(Activation("relu"))
model.add(Conv2D(filters=16, kernel_size=3, name="conv2"))
model.add(Activation("relu"))
model.add(MaxPool2D())

model.add(Conv2D(filters=32, kernel_size=3, name="conv3"))
model.add(Activation("relu"))
model.add(Conv2D(filters=32, kernel_size=3, name="conv4"))
model.add(Activation("relu"))
model.add(MaxPool2D())

model.add(Flatten())
model.add(Dense(128))
model.add(Activation("relu"))
model.add(Dense(num_classes, name="features"))
model.add(Activation("softmax"))

# Print the DNN layers
model.summary()

# Train the DNN
lr = 1e-3
optimizer = Adam(lr=lr)
model.compile(loss="categorical_crossentropy", optimizer=optimizer, metrics=["accuracy"])
model.fit(x_train, y_train, verbose=1,
batch_size=batch_size, epochs=epochs,
validation_data=(x_test, y_test),
callbacks=[tb])


And this is what i see in TensorBoard.
(I minimized the Kernels of my first conv layer)
TB Screenshot



What am i missing to visulize all my kernels?










share|improve this question





























    1















    I am using Keras with TensorFlow as backend.
    Now i want to use the TensorBoard callback to visualize my conv layer kernels.
    But i can only see the first conv layer kernel in TensorBoard and my Dense layers at the end.
    For the other conv layers i can just the the bias values and not the kernels.



    Here is my sample code for the Keras model.



    tb = TensorBoard(
    log_dir=log_dir,
    histogram_freq=epochs,
    write_images=True)

    # Define the DNN
    model = Sequential()
    model.add(Conv2D(filters=16, kernel_size=3, input_shape=(width, height, depth), name="conv1"))
    model.add(Activation("relu"))
    model.add(Conv2D(filters=16, kernel_size=3, name="conv2"))
    model.add(Activation("relu"))
    model.add(MaxPool2D())

    model.add(Conv2D(filters=32, kernel_size=3, name="conv3"))
    model.add(Activation("relu"))
    model.add(Conv2D(filters=32, kernel_size=3, name="conv4"))
    model.add(Activation("relu"))
    model.add(MaxPool2D())

    model.add(Flatten())
    model.add(Dense(128))
    model.add(Activation("relu"))
    model.add(Dense(num_classes, name="features"))
    model.add(Activation("softmax"))

    # Print the DNN layers
    model.summary()

    # Train the DNN
    lr = 1e-3
    optimizer = Adam(lr=lr)
    model.compile(loss="categorical_crossentropy", optimizer=optimizer, metrics=["accuracy"])
    model.fit(x_train, y_train, verbose=1,
    batch_size=batch_size, epochs=epochs,
    validation_data=(x_test, y_test),
    callbacks=[tb])


    And this is what i see in TensorBoard.
    (I minimized the Kernels of my first conv layer)
    TB Screenshot



    What am i missing to visulize all my kernels?










    share|improve this question



























      1












      1








      1








      I am using Keras with TensorFlow as backend.
      Now i want to use the TensorBoard callback to visualize my conv layer kernels.
      But i can only see the first conv layer kernel in TensorBoard and my Dense layers at the end.
      For the other conv layers i can just the the bias values and not the kernels.



      Here is my sample code for the Keras model.



      tb = TensorBoard(
      log_dir=log_dir,
      histogram_freq=epochs,
      write_images=True)

      # Define the DNN
      model = Sequential()
      model.add(Conv2D(filters=16, kernel_size=3, input_shape=(width, height, depth), name="conv1"))
      model.add(Activation("relu"))
      model.add(Conv2D(filters=16, kernel_size=3, name="conv2"))
      model.add(Activation("relu"))
      model.add(MaxPool2D())

      model.add(Conv2D(filters=32, kernel_size=3, name="conv3"))
      model.add(Activation("relu"))
      model.add(Conv2D(filters=32, kernel_size=3, name="conv4"))
      model.add(Activation("relu"))
      model.add(MaxPool2D())

      model.add(Flatten())
      model.add(Dense(128))
      model.add(Activation("relu"))
      model.add(Dense(num_classes, name="features"))
      model.add(Activation("softmax"))

      # Print the DNN layers
      model.summary()

      # Train the DNN
      lr = 1e-3
      optimizer = Adam(lr=lr)
      model.compile(loss="categorical_crossentropy", optimizer=optimizer, metrics=["accuracy"])
      model.fit(x_train, y_train, verbose=1,
      batch_size=batch_size, epochs=epochs,
      validation_data=(x_test, y_test),
      callbacks=[tb])


      And this is what i see in TensorBoard.
      (I minimized the Kernels of my first conv layer)
      TB Screenshot



      What am i missing to visulize all my kernels?










      share|improve this question
















      I am using Keras with TensorFlow as backend.
      Now i want to use the TensorBoard callback to visualize my conv layer kernels.
      But i can only see the first conv layer kernel in TensorBoard and my Dense layers at the end.
      For the other conv layers i can just the the bias values and not the kernels.



      Here is my sample code for the Keras model.



      tb = TensorBoard(
      log_dir=log_dir,
      histogram_freq=epochs,
      write_images=True)

      # Define the DNN
      model = Sequential()
      model.add(Conv2D(filters=16, kernel_size=3, input_shape=(width, height, depth), name="conv1"))
      model.add(Activation("relu"))
      model.add(Conv2D(filters=16, kernel_size=3, name="conv2"))
      model.add(Activation("relu"))
      model.add(MaxPool2D())

      model.add(Conv2D(filters=32, kernel_size=3, name="conv3"))
      model.add(Activation("relu"))
      model.add(Conv2D(filters=32, kernel_size=3, name="conv4"))
      model.add(Activation("relu"))
      model.add(MaxPool2D())

      model.add(Flatten())
      model.add(Dense(128))
      model.add(Activation("relu"))
      model.add(Dense(num_classes, name="features"))
      model.add(Activation("softmax"))

      # Print the DNN layers
      model.summary()

      # Train the DNN
      lr = 1e-3
      optimizer = Adam(lr=lr)
      model.compile(loss="categorical_crossentropy", optimizer=optimizer, metrics=["accuracy"])
      model.fit(x_train, y_train, verbose=1,
      batch_size=batch_size, epochs=epochs,
      validation_data=(x_test, y_test),
      callbacks=[tb])


      And this is what i see in TensorBoard.
      (I minimized the Kernels of my first conv layer)
      TB Screenshot



      What am i missing to visulize all my kernels?







      python keras tensorboard






      share|improve this question















      share|improve this question













      share|improve this question




      share|improve this question








      edited Nov 17 '18 at 17:06







      Franneck

















      asked Nov 17 '18 at 14:36









      FranneckFranneck

      64




      64
























          0






          active

          oldest

          votes











          Your Answer






          StackExchange.ifUsing("editor", function () {
          StackExchange.using("externalEditor", function () {
          StackExchange.using("snippets", function () {
          StackExchange.snippets.init();
          });
          });
          }, "code-snippets");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "1"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53352215%2fkeras-tensorboard-visulize-conv-kernels%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          0






          active

          oldest

          votes








          0






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes
















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Stack Overflow!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53352215%2fkeras-tensorboard-visulize-conv-kernels%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Guess what letter conforming each word

          Run scheduled task as local user group (not BUILTIN)

          Port of Spain