dplyr::arrange refuse to arrange dataframe by timestamp column?

Multi tool use
Multi tool use











up vote
1
down vote

favorite












I have the following dataframe (here is the sample):



df <- structure(list(user_id = c(1L, 1L, 1L, 1L, 1L, 1L), obs_id = c(1L, 
2L, 2L, 2L, 2L, 2L), scroll_id = c(3L, 1L, 2L, 3L, 4L, 5L), timestamp = c(-1.74966971796047,
-1.70403832189443, -1.70379906928687, -1.70361867040459, -1.70347088963619,
-1.70319128699835), row_num = 1:6, scroll_length = c(6, 9, 14,
12, 13, 26), x_mean = c(-1.74134749014902, -1.19087086808828,
1.36178725012622, -1.32786301490502, 1.24184201608646, -1.31953110973881
), y_mean = c(-4.93507461932646, 0.0304680987883223, 0.140001980341645,
0.61911843405746, 0.434230282460559, 0.438563278736709), dx_mean = c(-0.514034686928457,
-0.709482080612108, 0.924636289935977, -0.702980646737082, 0.515080876392673,
-0.359676884238743), dy_mean = c(0.972265996197407, -0.692113718739584,
-0.162463490249733, -0.373682612876388, -0.0663766957581004,
0.293619375985922)), .Names = c("user_id", "obs_id", "scroll_id",
"timestamp", "row_num", "scroll_length", "x_mean", "y_mean",
"dx_mean", "dy_mean"), row.names = c(NA, -6L), class = c("tbl_df",
"tbl", "data.frame"))


I want to arrange by timestamp column but I get the following error:



data %>% arrange(timestamp)
data %>% arrange("timestamp")



Error in arrange_impl(.data, dots) : Argument 1 is of unsupported type
matrix




Please advise how to make it work. I know that timestamp is a function and matrix but here it's a column and I "want" dplyr to "understand" that it's a column.



As @sotos asked:



sessionInfo():

R version 3.4.4 (2018-03-15)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 18.04.1 LTS

Matrix products: default
BLAS: /usr/lib/x86_64-linux-gnu/blas/libblas.so.3.7.1
LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.7.1

locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C LC_TIME=en_IL.UTF-8 LC_COLLATE=en_US.UTF-8 LC_MONETARY=en_IL.UTF-8
[6] LC_MESSAGES=en_US.UTF-8 LC_PAPER=en_IL.UTF-8 LC_NAME=C LC_ADDRESS=C LC_TELEPHONE=C
[11] LC_MEASUREMENT=en_IL.UTF-8 LC_IDENTIFICATION=C

attached base packages:
[1] parallel stats graphics grDevices utils datasets methods base

other attached packages:
[1] bindrcpp_0.2.2 rebus_0.1-3 philentropy_0.2.0 reshape2_1.4.3 broom_0.5.0 dummies_1.5.6 hms_0.4.2
[8] anytime_0.3.1 data.table_1.11.8 bit64_0.9-7 bit_1.1-14 car_3.0-2 carData_3.0-2 caret_6.0-80
[15] lattice_0.20-35 xgboost_0.71.2 doSNOW_1.0.16 snow_0.4-3 doMC_1.3.5 iterators_1.0.10 foreach_1.4.4
[22] randomForest_4.6-14 htmlwidgets_1.3 plotly_4.8.0 jsonlite_1.5 pROC_1.13.0 knitr_1.20 lubridate_1.7.4
[29] MASS_7.3-49 chron_2.3-53 forcats_0.3.0 stringr_1.3.1 dplyr_0.7.7 purrr_0.2.5 readr_1.1.1
[36] tidyr_0.8.2 tibble_1.4.2 ggplot2_3.1.0 tidyverse_1.2.1

loaded via a namespace (and not attached):
[1] nlme_3.1-137 dimRed_0.1.0 httr_1.3.1 tools_3.4.4 backports_1.1.2 R6_2.3.0
[7] rpart_4.1-13 rebus.base_0.0-3 lazyeval_0.2.1 colorspace_1.3-2 nnet_7.3-12 withr_2.1.2
[13] tidyselect_0.2.5 curl_3.1 compiler_3.4.4 cli_1.0.1 rvest_0.3.2 xml2_1.2.0
[19] scales_1.0.0 sfsmisc_1.1-2 DEoptimR_1.0-8 robustbase_0.93-3 RApiDatetime_0.0.4 digest_0.6.18
[25] rebus.unicode_0.0-2 foreign_0.8-70 rio_0.5.10 pkgconfig_2.0.2 htmltools_0.3.6 rlang_0.3.0.1
[31] readxl_1.1.0 ddalpha_1.3.4 rstudioapi_0.8 bindr_0.1.1 zip_1.0.0 ModelMetrics_1.2.0
[37] magrittr_1.5 Matrix_1.2-14 Rcpp_0.12.19 munsell_0.5.0 abind_1.4-5 stringi_1.2.4
[43] yaml_2.2.0 plyr_1.8.4 recipes_0.1.3 grid_3.4.4 pls_2.7-0 crayon_1.3.4
[49] rebus.datetimes_0.0-1 haven_1.1.2 splines_3.4.4 pillar_1.3.0 rebus.numbers_0.0-1 codetools_0.2-15
[55] stats4_3.4.4 CVST_0.2-2 magic_1.5-9 glue_1.3.0 modelr_0.1.2 cellranger_1.1.0
[61] gtable_0.2.0 kernlab_0.9-27 assertthat_0.2.0 DRR_0.0.3 openxlsx_4.1.0 gower_0.1.2
[67] prodlim_2018.04.18 class_7.3-14 survival_2.42-3 viridisLite_0.3.0 geometry_0.3-6 timeDate_3043.102
[73] RcppRoll_0.3.0 lava_1.6.3 ipred_0.9-7









share|improve this question
























  • Comments are not for extended discussion; this conversation has been moved to chat.
    – Samuel Liew
    Nov 8 at 11:21















up vote
1
down vote

favorite












I have the following dataframe (here is the sample):



df <- structure(list(user_id = c(1L, 1L, 1L, 1L, 1L, 1L), obs_id = c(1L, 
2L, 2L, 2L, 2L, 2L), scroll_id = c(3L, 1L, 2L, 3L, 4L, 5L), timestamp = c(-1.74966971796047,
-1.70403832189443, -1.70379906928687, -1.70361867040459, -1.70347088963619,
-1.70319128699835), row_num = 1:6, scroll_length = c(6, 9, 14,
12, 13, 26), x_mean = c(-1.74134749014902, -1.19087086808828,
1.36178725012622, -1.32786301490502, 1.24184201608646, -1.31953110973881
), y_mean = c(-4.93507461932646, 0.0304680987883223, 0.140001980341645,
0.61911843405746, 0.434230282460559, 0.438563278736709), dx_mean = c(-0.514034686928457,
-0.709482080612108, 0.924636289935977, -0.702980646737082, 0.515080876392673,
-0.359676884238743), dy_mean = c(0.972265996197407, -0.692113718739584,
-0.162463490249733, -0.373682612876388, -0.0663766957581004,
0.293619375985922)), .Names = c("user_id", "obs_id", "scroll_id",
"timestamp", "row_num", "scroll_length", "x_mean", "y_mean",
"dx_mean", "dy_mean"), row.names = c(NA, -6L), class = c("tbl_df",
"tbl", "data.frame"))


I want to arrange by timestamp column but I get the following error:



data %>% arrange(timestamp)
data %>% arrange("timestamp")



Error in arrange_impl(.data, dots) : Argument 1 is of unsupported type
matrix




Please advise how to make it work. I know that timestamp is a function and matrix but here it's a column and I "want" dplyr to "understand" that it's a column.



As @sotos asked:



sessionInfo():

R version 3.4.4 (2018-03-15)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 18.04.1 LTS

Matrix products: default
BLAS: /usr/lib/x86_64-linux-gnu/blas/libblas.so.3.7.1
LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.7.1

locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C LC_TIME=en_IL.UTF-8 LC_COLLATE=en_US.UTF-8 LC_MONETARY=en_IL.UTF-8
[6] LC_MESSAGES=en_US.UTF-8 LC_PAPER=en_IL.UTF-8 LC_NAME=C LC_ADDRESS=C LC_TELEPHONE=C
[11] LC_MEASUREMENT=en_IL.UTF-8 LC_IDENTIFICATION=C

attached base packages:
[1] parallel stats graphics grDevices utils datasets methods base

other attached packages:
[1] bindrcpp_0.2.2 rebus_0.1-3 philentropy_0.2.0 reshape2_1.4.3 broom_0.5.0 dummies_1.5.6 hms_0.4.2
[8] anytime_0.3.1 data.table_1.11.8 bit64_0.9-7 bit_1.1-14 car_3.0-2 carData_3.0-2 caret_6.0-80
[15] lattice_0.20-35 xgboost_0.71.2 doSNOW_1.0.16 snow_0.4-3 doMC_1.3.5 iterators_1.0.10 foreach_1.4.4
[22] randomForest_4.6-14 htmlwidgets_1.3 plotly_4.8.0 jsonlite_1.5 pROC_1.13.0 knitr_1.20 lubridate_1.7.4
[29] MASS_7.3-49 chron_2.3-53 forcats_0.3.0 stringr_1.3.1 dplyr_0.7.7 purrr_0.2.5 readr_1.1.1
[36] tidyr_0.8.2 tibble_1.4.2 ggplot2_3.1.0 tidyverse_1.2.1

loaded via a namespace (and not attached):
[1] nlme_3.1-137 dimRed_0.1.0 httr_1.3.1 tools_3.4.4 backports_1.1.2 R6_2.3.0
[7] rpart_4.1-13 rebus.base_0.0-3 lazyeval_0.2.1 colorspace_1.3-2 nnet_7.3-12 withr_2.1.2
[13] tidyselect_0.2.5 curl_3.1 compiler_3.4.4 cli_1.0.1 rvest_0.3.2 xml2_1.2.0
[19] scales_1.0.0 sfsmisc_1.1-2 DEoptimR_1.0-8 robustbase_0.93-3 RApiDatetime_0.0.4 digest_0.6.18
[25] rebus.unicode_0.0-2 foreign_0.8-70 rio_0.5.10 pkgconfig_2.0.2 htmltools_0.3.6 rlang_0.3.0.1
[31] readxl_1.1.0 ddalpha_1.3.4 rstudioapi_0.8 bindr_0.1.1 zip_1.0.0 ModelMetrics_1.2.0
[37] magrittr_1.5 Matrix_1.2-14 Rcpp_0.12.19 munsell_0.5.0 abind_1.4-5 stringi_1.2.4
[43] yaml_2.2.0 plyr_1.8.4 recipes_0.1.3 grid_3.4.4 pls_2.7-0 crayon_1.3.4
[49] rebus.datetimes_0.0-1 haven_1.1.2 splines_3.4.4 pillar_1.3.0 rebus.numbers_0.0-1 codetools_0.2-15
[55] stats4_3.4.4 CVST_0.2-2 magic_1.5-9 glue_1.3.0 modelr_0.1.2 cellranger_1.1.0
[61] gtable_0.2.0 kernlab_0.9-27 assertthat_0.2.0 DRR_0.0.3 openxlsx_4.1.0 gower_0.1.2
[67] prodlim_2018.04.18 class_7.3-14 survival_2.42-3 viridisLite_0.3.0 geometry_0.3-6 timeDate_3043.102
[73] RcppRoll_0.3.0 lava_1.6.3 ipred_0.9-7









share|improve this question
























  • Comments are not for extended discussion; this conversation has been moved to chat.
    – Samuel Liew
    Nov 8 at 11:21













up vote
1
down vote

favorite









up vote
1
down vote

favorite











I have the following dataframe (here is the sample):



df <- structure(list(user_id = c(1L, 1L, 1L, 1L, 1L, 1L), obs_id = c(1L, 
2L, 2L, 2L, 2L, 2L), scroll_id = c(3L, 1L, 2L, 3L, 4L, 5L), timestamp = c(-1.74966971796047,
-1.70403832189443, -1.70379906928687, -1.70361867040459, -1.70347088963619,
-1.70319128699835), row_num = 1:6, scroll_length = c(6, 9, 14,
12, 13, 26), x_mean = c(-1.74134749014902, -1.19087086808828,
1.36178725012622, -1.32786301490502, 1.24184201608646, -1.31953110973881
), y_mean = c(-4.93507461932646, 0.0304680987883223, 0.140001980341645,
0.61911843405746, 0.434230282460559, 0.438563278736709), dx_mean = c(-0.514034686928457,
-0.709482080612108, 0.924636289935977, -0.702980646737082, 0.515080876392673,
-0.359676884238743), dy_mean = c(0.972265996197407, -0.692113718739584,
-0.162463490249733, -0.373682612876388, -0.0663766957581004,
0.293619375985922)), .Names = c("user_id", "obs_id", "scroll_id",
"timestamp", "row_num", "scroll_length", "x_mean", "y_mean",
"dx_mean", "dy_mean"), row.names = c(NA, -6L), class = c("tbl_df",
"tbl", "data.frame"))


I want to arrange by timestamp column but I get the following error:



data %>% arrange(timestamp)
data %>% arrange("timestamp")



Error in arrange_impl(.data, dots) : Argument 1 is of unsupported type
matrix




Please advise how to make it work. I know that timestamp is a function and matrix but here it's a column and I "want" dplyr to "understand" that it's a column.



As @sotos asked:



sessionInfo():

R version 3.4.4 (2018-03-15)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 18.04.1 LTS

Matrix products: default
BLAS: /usr/lib/x86_64-linux-gnu/blas/libblas.so.3.7.1
LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.7.1

locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C LC_TIME=en_IL.UTF-8 LC_COLLATE=en_US.UTF-8 LC_MONETARY=en_IL.UTF-8
[6] LC_MESSAGES=en_US.UTF-8 LC_PAPER=en_IL.UTF-8 LC_NAME=C LC_ADDRESS=C LC_TELEPHONE=C
[11] LC_MEASUREMENT=en_IL.UTF-8 LC_IDENTIFICATION=C

attached base packages:
[1] parallel stats graphics grDevices utils datasets methods base

other attached packages:
[1] bindrcpp_0.2.2 rebus_0.1-3 philentropy_0.2.0 reshape2_1.4.3 broom_0.5.0 dummies_1.5.6 hms_0.4.2
[8] anytime_0.3.1 data.table_1.11.8 bit64_0.9-7 bit_1.1-14 car_3.0-2 carData_3.0-2 caret_6.0-80
[15] lattice_0.20-35 xgboost_0.71.2 doSNOW_1.0.16 snow_0.4-3 doMC_1.3.5 iterators_1.0.10 foreach_1.4.4
[22] randomForest_4.6-14 htmlwidgets_1.3 plotly_4.8.0 jsonlite_1.5 pROC_1.13.0 knitr_1.20 lubridate_1.7.4
[29] MASS_7.3-49 chron_2.3-53 forcats_0.3.0 stringr_1.3.1 dplyr_0.7.7 purrr_0.2.5 readr_1.1.1
[36] tidyr_0.8.2 tibble_1.4.2 ggplot2_3.1.0 tidyverse_1.2.1

loaded via a namespace (and not attached):
[1] nlme_3.1-137 dimRed_0.1.0 httr_1.3.1 tools_3.4.4 backports_1.1.2 R6_2.3.0
[7] rpart_4.1-13 rebus.base_0.0-3 lazyeval_0.2.1 colorspace_1.3-2 nnet_7.3-12 withr_2.1.2
[13] tidyselect_0.2.5 curl_3.1 compiler_3.4.4 cli_1.0.1 rvest_0.3.2 xml2_1.2.0
[19] scales_1.0.0 sfsmisc_1.1-2 DEoptimR_1.0-8 robustbase_0.93-3 RApiDatetime_0.0.4 digest_0.6.18
[25] rebus.unicode_0.0-2 foreign_0.8-70 rio_0.5.10 pkgconfig_2.0.2 htmltools_0.3.6 rlang_0.3.0.1
[31] readxl_1.1.0 ddalpha_1.3.4 rstudioapi_0.8 bindr_0.1.1 zip_1.0.0 ModelMetrics_1.2.0
[37] magrittr_1.5 Matrix_1.2-14 Rcpp_0.12.19 munsell_0.5.0 abind_1.4-5 stringi_1.2.4
[43] yaml_2.2.0 plyr_1.8.4 recipes_0.1.3 grid_3.4.4 pls_2.7-0 crayon_1.3.4
[49] rebus.datetimes_0.0-1 haven_1.1.2 splines_3.4.4 pillar_1.3.0 rebus.numbers_0.0-1 codetools_0.2-15
[55] stats4_3.4.4 CVST_0.2-2 magic_1.5-9 glue_1.3.0 modelr_0.1.2 cellranger_1.1.0
[61] gtable_0.2.0 kernlab_0.9-27 assertthat_0.2.0 DRR_0.0.3 openxlsx_4.1.0 gower_0.1.2
[67] prodlim_2018.04.18 class_7.3-14 survival_2.42-3 viridisLite_0.3.0 geometry_0.3-6 timeDate_3043.102
[73] RcppRoll_0.3.0 lava_1.6.3 ipred_0.9-7









share|improve this question















I have the following dataframe (here is the sample):



df <- structure(list(user_id = c(1L, 1L, 1L, 1L, 1L, 1L), obs_id = c(1L, 
2L, 2L, 2L, 2L, 2L), scroll_id = c(3L, 1L, 2L, 3L, 4L, 5L), timestamp = c(-1.74966971796047,
-1.70403832189443, -1.70379906928687, -1.70361867040459, -1.70347088963619,
-1.70319128699835), row_num = 1:6, scroll_length = c(6, 9, 14,
12, 13, 26), x_mean = c(-1.74134749014902, -1.19087086808828,
1.36178725012622, -1.32786301490502, 1.24184201608646, -1.31953110973881
), y_mean = c(-4.93507461932646, 0.0304680987883223, 0.140001980341645,
0.61911843405746, 0.434230282460559, 0.438563278736709), dx_mean = c(-0.514034686928457,
-0.709482080612108, 0.924636289935977, -0.702980646737082, 0.515080876392673,
-0.359676884238743), dy_mean = c(0.972265996197407, -0.692113718739584,
-0.162463490249733, -0.373682612876388, -0.0663766957581004,
0.293619375985922)), .Names = c("user_id", "obs_id", "scroll_id",
"timestamp", "row_num", "scroll_length", "x_mean", "y_mean",
"dx_mean", "dy_mean"), row.names = c(NA, -6L), class = c("tbl_df",
"tbl", "data.frame"))


I want to arrange by timestamp column but I get the following error:



data %>% arrange(timestamp)
data %>% arrange("timestamp")



Error in arrange_impl(.data, dots) : Argument 1 is of unsupported type
matrix




Please advise how to make it work. I know that timestamp is a function and matrix but here it's a column and I "want" dplyr to "understand" that it's a column.



As @sotos asked:



sessionInfo():

R version 3.4.4 (2018-03-15)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 18.04.1 LTS

Matrix products: default
BLAS: /usr/lib/x86_64-linux-gnu/blas/libblas.so.3.7.1
LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.7.1

locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C LC_TIME=en_IL.UTF-8 LC_COLLATE=en_US.UTF-8 LC_MONETARY=en_IL.UTF-8
[6] LC_MESSAGES=en_US.UTF-8 LC_PAPER=en_IL.UTF-8 LC_NAME=C LC_ADDRESS=C LC_TELEPHONE=C
[11] LC_MEASUREMENT=en_IL.UTF-8 LC_IDENTIFICATION=C

attached base packages:
[1] parallel stats graphics grDevices utils datasets methods base

other attached packages:
[1] bindrcpp_0.2.2 rebus_0.1-3 philentropy_0.2.0 reshape2_1.4.3 broom_0.5.0 dummies_1.5.6 hms_0.4.2
[8] anytime_0.3.1 data.table_1.11.8 bit64_0.9-7 bit_1.1-14 car_3.0-2 carData_3.0-2 caret_6.0-80
[15] lattice_0.20-35 xgboost_0.71.2 doSNOW_1.0.16 snow_0.4-3 doMC_1.3.5 iterators_1.0.10 foreach_1.4.4
[22] randomForest_4.6-14 htmlwidgets_1.3 plotly_4.8.0 jsonlite_1.5 pROC_1.13.0 knitr_1.20 lubridate_1.7.4
[29] MASS_7.3-49 chron_2.3-53 forcats_0.3.0 stringr_1.3.1 dplyr_0.7.7 purrr_0.2.5 readr_1.1.1
[36] tidyr_0.8.2 tibble_1.4.2 ggplot2_3.1.0 tidyverse_1.2.1

loaded via a namespace (and not attached):
[1] nlme_3.1-137 dimRed_0.1.0 httr_1.3.1 tools_3.4.4 backports_1.1.2 R6_2.3.0
[7] rpart_4.1-13 rebus.base_0.0-3 lazyeval_0.2.1 colorspace_1.3-2 nnet_7.3-12 withr_2.1.2
[13] tidyselect_0.2.5 curl_3.1 compiler_3.4.4 cli_1.0.1 rvest_0.3.2 xml2_1.2.0
[19] scales_1.0.0 sfsmisc_1.1-2 DEoptimR_1.0-8 robustbase_0.93-3 RApiDatetime_0.0.4 digest_0.6.18
[25] rebus.unicode_0.0-2 foreign_0.8-70 rio_0.5.10 pkgconfig_2.0.2 htmltools_0.3.6 rlang_0.3.0.1
[31] readxl_1.1.0 ddalpha_1.3.4 rstudioapi_0.8 bindr_0.1.1 zip_1.0.0 ModelMetrics_1.2.0
[37] magrittr_1.5 Matrix_1.2-14 Rcpp_0.12.19 munsell_0.5.0 abind_1.4-5 stringi_1.2.4
[43] yaml_2.2.0 plyr_1.8.4 recipes_0.1.3 grid_3.4.4 pls_2.7-0 crayon_1.3.4
[49] rebus.datetimes_0.0-1 haven_1.1.2 splines_3.4.4 pillar_1.3.0 rebus.numbers_0.0-1 codetools_0.2-15
[55] stats4_3.4.4 CVST_0.2-2 magic_1.5-9 glue_1.3.0 modelr_0.1.2 cellranger_1.1.0
[61] gtable_0.2.0 kernlab_0.9-27 assertthat_0.2.0 DRR_0.0.3 openxlsx_4.1.0 gower_0.1.2
[67] prodlim_2018.04.18 class_7.3-14 survival_2.42-3 viridisLite_0.3.0 geometry_0.3-6 timeDate_3043.102
[73] RcppRoll_0.3.0 lava_1.6.3 ipred_0.9-7






r dataframe dplyr tidyverse






share|improve this question















share|improve this question













share|improve this question




share|improve this question








edited Nov 8 at 9:19

























asked Nov 8 at 9:09









steves

477211




477211












  • Comments are not for extended discussion; this conversation has been moved to chat.
    – Samuel Liew
    Nov 8 at 11:21


















  • Comments are not for extended discussion; this conversation has been moved to chat.
    – Samuel Liew
    Nov 8 at 11:21
















Comments are not for extended discussion; this conversation has been moved to chat.
– Samuel Liew
Nov 8 at 11:21




Comments are not for extended discussion; this conversation has been moved to chat.
– Samuel Liew
Nov 8 at 11:21












2 Answers
2






active

oldest

votes

















up vote
2
down vote













df %>% arrange(timestamp)

arrange() from dplyr arranges as below in ascending order
# A tibble: 6 x 10
user_id obs_id scroll_id timestamp row_num scroll_length x_mean y_mean dx_mean dy_mean
<int> <int> <int> <dbl> <int> <dbl> <dbl> <dbl> <dbl> <dbl>
1 1 1 3 -1.75 1 6 -1.74 -4.94 -0.514 0.972
2 1 2 1 -1.70 2 9 -1.19 0.0305 -0.709 -0.692
3 1 2 2 -1.70 3 14 1.36 0.140 0.925 -0.162
4 1 2 3 -1.70 4 12 -1.33 0.619 -0.703 -0.374
5 1 2 4 -1.70 5 13 1.24 0.434 0.515 -0.0664
6 1 2 5 -1.70 6 26 -1.32 0.439 -0.360 0.294





share|improve this answer






























    up vote
    1
    down vote













    Thanks for all comments, I have found out a solution:



    My df dataframe is scaled and centered - the function that produces df returns:



    scale(df)


    When I have printed str(df) I have seen attributes saying that it's centered and scaled.



    When converting to data.table it solved the issue:



    df %>% as.data.table() %>% dplyr::arrange(obs_id, user_id, scroll_id, timestamp)


    Please correct me if I am wrong.






    share|improve this answer





















    • Nice to see the solution.. also observed uneven number of data points in each variable like dx_mean, dy_mean have only 212 points vs obs_id which is 356 rows?
      – Sai Prabhanjan Reddy
      Nov 8 at 11:16











    Your Answer






    StackExchange.ifUsing("editor", function () {
    StackExchange.using("externalEditor", function () {
    StackExchange.using("snippets", function () {
    StackExchange.snippets.init();
    });
    });
    }, "code-snippets");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "1"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














     

    draft saved


    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53204532%2fdplyrarrange-refuse-to-arrange-dataframe-by-timestamp-column%23new-answer', 'question_page');
    }
    );

    Post as a guest
































    2 Answers
    2






    active

    oldest

    votes








    2 Answers
    2






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes








    up vote
    2
    down vote













    df %>% arrange(timestamp)

    arrange() from dplyr arranges as below in ascending order
    # A tibble: 6 x 10
    user_id obs_id scroll_id timestamp row_num scroll_length x_mean y_mean dx_mean dy_mean
    <int> <int> <int> <dbl> <int> <dbl> <dbl> <dbl> <dbl> <dbl>
    1 1 1 3 -1.75 1 6 -1.74 -4.94 -0.514 0.972
    2 1 2 1 -1.70 2 9 -1.19 0.0305 -0.709 -0.692
    3 1 2 2 -1.70 3 14 1.36 0.140 0.925 -0.162
    4 1 2 3 -1.70 4 12 -1.33 0.619 -0.703 -0.374
    5 1 2 4 -1.70 5 13 1.24 0.434 0.515 -0.0664
    6 1 2 5 -1.70 6 26 -1.32 0.439 -0.360 0.294





    share|improve this answer



























      up vote
      2
      down vote













      df %>% arrange(timestamp)

      arrange() from dplyr arranges as below in ascending order
      # A tibble: 6 x 10
      user_id obs_id scroll_id timestamp row_num scroll_length x_mean y_mean dx_mean dy_mean
      <int> <int> <int> <dbl> <int> <dbl> <dbl> <dbl> <dbl> <dbl>
      1 1 1 3 -1.75 1 6 -1.74 -4.94 -0.514 0.972
      2 1 2 1 -1.70 2 9 -1.19 0.0305 -0.709 -0.692
      3 1 2 2 -1.70 3 14 1.36 0.140 0.925 -0.162
      4 1 2 3 -1.70 4 12 -1.33 0.619 -0.703 -0.374
      5 1 2 4 -1.70 5 13 1.24 0.434 0.515 -0.0664
      6 1 2 5 -1.70 6 26 -1.32 0.439 -0.360 0.294





      share|improve this answer

























        up vote
        2
        down vote










        up vote
        2
        down vote









        df %>% arrange(timestamp)

        arrange() from dplyr arranges as below in ascending order
        # A tibble: 6 x 10
        user_id obs_id scroll_id timestamp row_num scroll_length x_mean y_mean dx_mean dy_mean
        <int> <int> <int> <dbl> <int> <dbl> <dbl> <dbl> <dbl> <dbl>
        1 1 1 3 -1.75 1 6 -1.74 -4.94 -0.514 0.972
        2 1 2 1 -1.70 2 9 -1.19 0.0305 -0.709 -0.692
        3 1 2 2 -1.70 3 14 1.36 0.140 0.925 -0.162
        4 1 2 3 -1.70 4 12 -1.33 0.619 -0.703 -0.374
        5 1 2 4 -1.70 5 13 1.24 0.434 0.515 -0.0664
        6 1 2 5 -1.70 6 26 -1.32 0.439 -0.360 0.294





        share|improve this answer














        df %>% arrange(timestamp)

        arrange() from dplyr arranges as below in ascending order
        # A tibble: 6 x 10
        user_id obs_id scroll_id timestamp row_num scroll_length x_mean y_mean dx_mean dy_mean
        <int> <int> <int> <dbl> <int> <dbl> <dbl> <dbl> <dbl> <dbl>
        1 1 1 3 -1.75 1 6 -1.74 -4.94 -0.514 0.972
        2 1 2 1 -1.70 2 9 -1.19 0.0305 -0.709 -0.692
        3 1 2 2 -1.70 3 14 1.36 0.140 0.925 -0.162
        4 1 2 3 -1.70 4 12 -1.33 0.619 -0.703 -0.374
        5 1 2 4 -1.70 5 13 1.24 0.434 0.515 -0.0664
        6 1 2 5 -1.70 6 26 -1.32 0.439 -0.360 0.294






        share|improve this answer














        share|improve this answer



        share|improve this answer








        edited Nov 8 at 9:27









        DJV

        1,2231216




        1,2231216










        answered Nov 8 at 9:24









        Sai Prabhanjan Reddy

        1829




        1829
























            up vote
            1
            down vote













            Thanks for all comments, I have found out a solution:



            My df dataframe is scaled and centered - the function that produces df returns:



            scale(df)


            When I have printed str(df) I have seen attributes saying that it's centered and scaled.



            When converting to data.table it solved the issue:



            df %>% as.data.table() %>% dplyr::arrange(obs_id, user_id, scroll_id, timestamp)


            Please correct me if I am wrong.






            share|improve this answer





















            • Nice to see the solution.. also observed uneven number of data points in each variable like dx_mean, dy_mean have only 212 points vs obs_id which is 356 rows?
              – Sai Prabhanjan Reddy
              Nov 8 at 11:16















            up vote
            1
            down vote













            Thanks for all comments, I have found out a solution:



            My df dataframe is scaled and centered - the function that produces df returns:



            scale(df)


            When I have printed str(df) I have seen attributes saying that it's centered and scaled.



            When converting to data.table it solved the issue:



            df %>% as.data.table() %>% dplyr::arrange(obs_id, user_id, scroll_id, timestamp)


            Please correct me if I am wrong.






            share|improve this answer





















            • Nice to see the solution.. also observed uneven number of data points in each variable like dx_mean, dy_mean have only 212 points vs obs_id which is 356 rows?
              – Sai Prabhanjan Reddy
              Nov 8 at 11:16













            up vote
            1
            down vote










            up vote
            1
            down vote









            Thanks for all comments, I have found out a solution:



            My df dataframe is scaled and centered - the function that produces df returns:



            scale(df)


            When I have printed str(df) I have seen attributes saying that it's centered and scaled.



            When converting to data.table it solved the issue:



            df %>% as.data.table() %>% dplyr::arrange(obs_id, user_id, scroll_id, timestamp)


            Please correct me if I am wrong.






            share|improve this answer












            Thanks for all comments, I have found out a solution:



            My df dataframe is scaled and centered - the function that produces df returns:



            scale(df)


            When I have printed str(df) I have seen attributes saying that it's centered and scaled.



            When converting to data.table it solved the issue:



            df %>% as.data.table() %>% dplyr::arrange(obs_id, user_id, scroll_id, timestamp)


            Please correct me if I am wrong.







            share|improve this answer












            share|improve this answer



            share|improve this answer










            answered Nov 8 at 10:50









            steves

            477211




            477211












            • Nice to see the solution.. also observed uneven number of data points in each variable like dx_mean, dy_mean have only 212 points vs obs_id which is 356 rows?
              – Sai Prabhanjan Reddy
              Nov 8 at 11:16


















            • Nice to see the solution.. also observed uneven number of data points in each variable like dx_mean, dy_mean have only 212 points vs obs_id which is 356 rows?
              – Sai Prabhanjan Reddy
              Nov 8 at 11:16
















            Nice to see the solution.. also observed uneven number of data points in each variable like dx_mean, dy_mean have only 212 points vs obs_id which is 356 rows?
            – Sai Prabhanjan Reddy
            Nov 8 at 11:16




            Nice to see the solution.. also observed uneven number of data points in each variable like dx_mean, dy_mean have only 212 points vs obs_id which is 356 rows?
            – Sai Prabhanjan Reddy
            Nov 8 at 11:16


















             

            draft saved


            draft discarded



















































             


            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53204532%2fdplyrarrange-refuse-to-arrange-dataframe-by-timestamp-column%23new-answer', 'question_page');
            }
            );

            Post as a guest




















































































            gE zosEnY 5wZ0koewGC3AqdHuY7tltW2fZrj,7y,c0MtfpXhGXUzhsYD3 qnrmBoyDR DfljN4H
            9e6UKZJyd7fcg Nymk2BU9oMX3k 1 7s5piixo D9 NPTmdAsB2qlVxHd29B6Z vQ9h9Ff CD

            Popular posts from this blog

            How to pass form data using jquery Ajax to insert data in database?

            Guess what letter conforming each word

            Run scheduled task as local user group (not BUILTIN)