交错级数判别法




交错级数审敛法是证明无穷级数收敛的一种方法.该方法最早由戈特弗里德·莱布尼茨发现,因此该方法通常也称为莱布尼茨判别法莱布尼茨准则


具有以下形式的级数


n=0∞(−1)nan{displaystyle sum _{n=0}^{infty }(-1)^{n}a_{n}!}sum _{n=0}^{infty }(-1)^{n}a_{n}!

其中所有的an非负,被称作交错级数.如果当n趋于无穷时,数列an的极限存在且等于0,并且每个an小于或等于an-1(即,数列an是单调递减的),那么级数收敛.如果L是级数的和


n=0∞(−1)nan=L{displaystyle sum _{n=0}^{infty }(-1)^{n}a_{n}=L!}sum _{{n=0}}^{infty }(-1)^{n}a_{n}=L!

那么部分和


Sk=∑n=0k(−1)nan{displaystyle S_{k}=sum _{n=0}^{k}(-1)^{n}a_{n}!}S_{k}=sum _{{n=0}}^{k}(-1)^{n}a_{n}!

逼近L有截断误差



|Sk−L|≤|Sk−Sk−1|=ak{displaystyle left|S_{k}-Lrightvert leq left|S_{k}-S_{k-1}rightvert =a_{k}!}left|S_{k}-Lrightvert leq left|S_{k}-S_{{k-1}}rightvert =a_{k}!



目录






  • 1 证明


    • 1.1 收敛性证明


    • 1.2 部分和截断误差的证明




  • 2 参阅


  • 3 图书资料


  • 4 参考文献





证明


我们假设级数具有形式n=0∞(−1)nan{displaystyle sum _{n=0}^{infty }(-1)^{n}a_{n}!}sum _{{n=0}}^{infty }(-1)^{n}a_{n}!.当n{displaystyle n}n趋于无穷时,数列an{displaystyle a_{n}}a_{n}的极限等于0,并且每个 an{displaystyle a_{n}}a_{n}小于或等于an−1{displaystyle a_{n-1}}a_{{n-1}}(即an{displaystyle a_{n}}a_{n}是单调递减数列).[1]





收敛性证明


给定数列前(2n+1)项的部分和S2n+1=a0+(−a1+a2)+(−a3+a4)+…+(−a2n−1+a2n)−a2n+1{displaystyle S_{2n+1}=a_{0}+left({-a_{1}+a_{2}}right)+left({-a_{3}+a_{4}}right)+ldots +left({-a_{2n-1}+a_{2n}}right)-a_{2n+1}}{displaystyle S_{2n+1}=a_{0}+left({-a_{1}+a_{2}}right)+left({-a_{3}+a_{4}}right)+ldots +left({-a_{2n-1}+a_{2n}}right)-a_{2n+1}}.由于每个括号内的和非正,并且a2n+1≥0{displaystyle a_{2n+1}geq 0}a_{{2n+1}}geq 0,那么前 (2n+1)项的部分和不大于a0{displaystyle a_{0}}a_{0}.


并且每个部分和可写做S2n+1=(a0−a1)+(a2−a3)+…+(a2n−a2n+1){displaystyle S_{2n+1}=left({a_{0}-a_{1}}right)+left({a_{2}-a_{3}}right)+ldots +left({a_{2n}-a_{2n+1}}right)}{displaystyle S_{2n+1}=left({a_{0}-a_{1}}right)+left({a_{2}-a_{3}}right)+ldots +left({a_{2n}-a_{2n+1}}right)}.每个括号内的和非负.因此,级数S2n+1{displaystyle S_{2n+1}}S_{{2n+1}}单调递增:对任何n∈N{displaystyle nin N}nin N均有:S2n+1≤S2n+3{displaystyle S_{2n+1}leq S_{2n+3}}S_{{2n+1}}leq S_{{2n+3}}.


结合以上两段论述,由单调收敛定理可得,存在数s使得 limn→S2n+1=s{displaystyle lim _{nto infty }S_{2n+1}=s}{displaystyle lim _{nto infty }S_{2n+1}=s}.


由于S2n=S2n+1−a2n+1{displaystyle S_{2n}=S_{2n+1}-a_{2n+1}}{displaystyle S_{2n}=S_{2n+1}-a_{2n+1}}并且limn→+∞an=0{displaystyle lim _{nto +infty }a_{n}=0}{displaystyle lim _{nto +infty }a_{n}=0},那么limn→S2n=s{displaystyle lim _{nto infty }S_{2n}=s}{displaystyle lim _{nto infty }S_{2n}=s}.给定数列的和为limn→S2n=limn→S2n+1=s{displaystyle lim _{nto infty }S_{2n}=lim _{nto infty }S_{2n+1}=s}{displaystyle lim _{nto infty }S_{2n}=lim _{nto infty }S_{2n+1}=s},其中s{displaystyle s}s为有限数,从而数列收敛.



部分和截断误差的证明


在收敛性的证明过程中,我们发现S2n+1{displaystyle S_{2n+1}}S_{{2n+1}}是单调递增的.由于S2n=a0+(−a1+a2)+…+(−a2n−1+a2n){displaystyle S_{2n}=a_{0}+left(-a_{1}+a_{2}right)+ldots +left(-a_{2n-1}+a_{2n}right)}S_{{2n}}=a_{0}+left(-a_{1}+a_{2}right)+ldots +left(-a_{{2n-1}}+a_{{2n}}right),并且括号中的每一项是非正的,这样可知S2n{displaystyle S_{2n}}S_{{2n}}是单调递减的.由先前的论述,limn→S2n=L{displaystyle lim _{nto infty }S_{2n}=L}lim _{{nto infty }}S_{{2n}}=L,因此S2n≥L{displaystyle S_{2n}geq L}S_{{2n}}geq L.类似的,由于S2n+1{displaystyle S_{2n+1}}S_{{2n+1}}是单调递增且收敛到L{displaystyle L}L,我们有S2n+1≤L{displaystyle S_{2n+1}leq L}S_{{2n+1}}leq L.因此我们有S2n+1≤L≤S2n{displaystyle S_{2n+1}leq Lleq S_{2n}}S_{{2n+1}}leq Lleq S_{{2n}}对所有的n均成立.


因此如果k是奇数我们有|L−Sk|=L−Sk≤Sk+1−Sk=ak+1≤ak{displaystyle |L-S_{k}|=L-S_{k}leq S_{k+1}-S_{k}=a_{k+1}leq a_{k}}|L-S_{k}|=L-S_{k}leq S_{{k+1}}-S_{k}=a_{{k+1}}leq a_{k},而如果k是偶数我们有|L−Sk|=Sk−L≤Sk−Sk−1=ak{displaystyle |L-S_{k}|=S_{k}-Lleq S_{k}-S_{k-1}=a_{k}}|L-S_{k}|=S_{k}-Lleq S_{k}-S_{{k-1}}=a_{k}



参阅


  • 狄利克雷判别法


图书资料


  • Knopp,Konrad,"Infinite Sequences and Series",Dover publications,Inc.,New York,1956.(§ 3.4) ISBN 0-486-60153-6

  • Whittaker,E.T.,and Watson,G.N.,A Course in Modern Analysis,fourth edition,Cambridge University Press,1963.(§ 2.3) ISBN 0-521-58807-3

  • Last,Philip,"Sequences and Series",New Science,Dublin,1979.(§ 3.4) ISBN 0-286-53154-3


参考文献




  1. ^ Beklemishev, Dmitry V. Analytic geometry and linear algebra course 10. FIZMATLIT. 2005. 




Popular posts from this blog

Guess what letter conforming each word

Port of Spain

Run scheduled task as local user group (not BUILTIN)