Pandas groupby apply anomaly with datetime












1















While experimenting Pandas in Jupyter, I noticed very strange symptom. I reduce it down to a bare minimum code that demonstrates the symptom:



import pandas as pd
import numpy as np
from datetime import datetime

df = pd.DataFrame({
'A': ['a', 'b', 'c'],
'B': [datetime(2018, 11, 1), datetime(2018, 11, 2), datetime(2018, 11, 3) ]
})
df

A B
0 a 2018-11-01
1 b 2018-11-02
2 c 2018-11-03

def process(gdf):
return pd.Series({
'C': datetime(2018, 11, 5)
})
df2 = df.groupby(['A']).apply(process).reset_index()
df2

A C
0 a 1541376000000000000
1 b 1541376000000000000
2 c 1541376000000000000

df2['C']

0 1541376000000000000
1 1541376000000000000
2 1541376000000000000
Name: C, dtype: int64


As you can see, the C column ended up being int64 type instead of the expected datetime64[ns] type. But if I don't have the B column then C column correctly ends up being datetime64[ns].



df = pd.DataFrame({
'A': ['a', 'b', 'c'],
# 'B': [datetime(2018, 11, 1), datetime(2018, 11, 2), datetime(2018, 11, 3) ]
})
df

A
0 a
1 b
2 c

def process(gdf):
return pd.Series({
'C': datetime(2018, 11, 5)
})
df2 = df.groupby(['A']).apply(process).reset_index()
df2

A C
0 a 2018-11-05
1 b 2018-11-05
2 c 2018-11-05

df2['C']

0 2018-11-05
1 2018-11-05
2 2018-11-05
Name: C, dtype: datetime64[ns]


I have no clue what is happening. Anyone any idea? I'm using Python 3.6 and Pandas 0.23.1










share|improve this question























  • I am using Python 2.7 and I cannot reproduce it. Also the first output is datetime

    – Joe
    Nov 20 '18 at 6:48
















1















While experimenting Pandas in Jupyter, I noticed very strange symptom. I reduce it down to a bare minimum code that demonstrates the symptom:



import pandas as pd
import numpy as np
from datetime import datetime

df = pd.DataFrame({
'A': ['a', 'b', 'c'],
'B': [datetime(2018, 11, 1), datetime(2018, 11, 2), datetime(2018, 11, 3) ]
})
df

A B
0 a 2018-11-01
1 b 2018-11-02
2 c 2018-11-03

def process(gdf):
return pd.Series({
'C': datetime(2018, 11, 5)
})
df2 = df.groupby(['A']).apply(process).reset_index()
df2

A C
0 a 1541376000000000000
1 b 1541376000000000000
2 c 1541376000000000000

df2['C']

0 1541376000000000000
1 1541376000000000000
2 1541376000000000000
Name: C, dtype: int64


As you can see, the C column ended up being int64 type instead of the expected datetime64[ns] type. But if I don't have the B column then C column correctly ends up being datetime64[ns].



df = pd.DataFrame({
'A': ['a', 'b', 'c'],
# 'B': [datetime(2018, 11, 1), datetime(2018, 11, 2), datetime(2018, 11, 3) ]
})
df

A
0 a
1 b
2 c

def process(gdf):
return pd.Series({
'C': datetime(2018, 11, 5)
})
df2 = df.groupby(['A']).apply(process).reset_index()
df2

A C
0 a 2018-11-05
1 b 2018-11-05
2 c 2018-11-05

df2['C']

0 2018-11-05
1 2018-11-05
2 2018-11-05
Name: C, dtype: datetime64[ns]


I have no clue what is happening. Anyone any idea? I'm using Python 3.6 and Pandas 0.23.1










share|improve this question























  • I am using Python 2.7 and I cannot reproduce it. Also the first output is datetime

    – Joe
    Nov 20 '18 at 6:48














1












1








1








While experimenting Pandas in Jupyter, I noticed very strange symptom. I reduce it down to a bare minimum code that demonstrates the symptom:



import pandas as pd
import numpy as np
from datetime import datetime

df = pd.DataFrame({
'A': ['a', 'b', 'c'],
'B': [datetime(2018, 11, 1), datetime(2018, 11, 2), datetime(2018, 11, 3) ]
})
df

A B
0 a 2018-11-01
1 b 2018-11-02
2 c 2018-11-03

def process(gdf):
return pd.Series({
'C': datetime(2018, 11, 5)
})
df2 = df.groupby(['A']).apply(process).reset_index()
df2

A C
0 a 1541376000000000000
1 b 1541376000000000000
2 c 1541376000000000000

df2['C']

0 1541376000000000000
1 1541376000000000000
2 1541376000000000000
Name: C, dtype: int64


As you can see, the C column ended up being int64 type instead of the expected datetime64[ns] type. But if I don't have the B column then C column correctly ends up being datetime64[ns].



df = pd.DataFrame({
'A': ['a', 'b', 'c'],
# 'B': [datetime(2018, 11, 1), datetime(2018, 11, 2), datetime(2018, 11, 3) ]
})
df

A
0 a
1 b
2 c

def process(gdf):
return pd.Series({
'C': datetime(2018, 11, 5)
})
df2 = df.groupby(['A']).apply(process).reset_index()
df2

A C
0 a 2018-11-05
1 b 2018-11-05
2 c 2018-11-05

df2['C']

0 2018-11-05
1 2018-11-05
2 2018-11-05
Name: C, dtype: datetime64[ns]


I have no clue what is happening. Anyone any idea? I'm using Python 3.6 and Pandas 0.23.1










share|improve this question














While experimenting Pandas in Jupyter, I noticed very strange symptom. I reduce it down to a bare minimum code that demonstrates the symptom:



import pandas as pd
import numpy as np
from datetime import datetime

df = pd.DataFrame({
'A': ['a', 'b', 'c'],
'B': [datetime(2018, 11, 1), datetime(2018, 11, 2), datetime(2018, 11, 3) ]
})
df

A B
0 a 2018-11-01
1 b 2018-11-02
2 c 2018-11-03

def process(gdf):
return pd.Series({
'C': datetime(2018, 11, 5)
})
df2 = df.groupby(['A']).apply(process).reset_index()
df2

A C
0 a 1541376000000000000
1 b 1541376000000000000
2 c 1541376000000000000

df2['C']

0 1541376000000000000
1 1541376000000000000
2 1541376000000000000
Name: C, dtype: int64


As you can see, the C column ended up being int64 type instead of the expected datetime64[ns] type. But if I don't have the B column then C column correctly ends up being datetime64[ns].



df = pd.DataFrame({
'A': ['a', 'b', 'c'],
# 'B': [datetime(2018, 11, 1), datetime(2018, 11, 2), datetime(2018, 11, 3) ]
})
df

A
0 a
1 b
2 c

def process(gdf):
return pd.Series({
'C': datetime(2018, 11, 5)
})
df2 = df.groupby(['A']).apply(process).reset_index()
df2

A C
0 a 2018-11-05
1 b 2018-11-05
2 c 2018-11-05

df2['C']

0 2018-11-05
1 2018-11-05
2 2018-11-05
Name: C, dtype: datetime64[ns]


I have no clue what is happening. Anyone any idea? I'm using Python 3.6 and Pandas 0.23.1







python pandas datetime group-by






share|improve this question













share|improve this question











share|improve this question




share|improve this question










asked Nov 20 '18 at 6:40









JakeJake

7182616




7182616













  • I am using Python 2.7 and I cannot reproduce it. Also the first output is datetime

    – Joe
    Nov 20 '18 at 6:48



















  • I am using Python 2.7 and I cannot reproduce it. Also the first output is datetime

    – Joe
    Nov 20 '18 at 6:48

















I am using Python 2.7 and I cannot reproduce it. Also the first output is datetime

– Joe
Nov 20 '18 at 6:48





I am using Python 2.7 and I cannot reproduce it. Also the first output is datetime

– Joe
Nov 20 '18 at 6:48












1 Answer
1






active

oldest

votes


















0














First it seems bug.



In my opinion here is possible create new column for each group and return not Series, but gdp group:



def process(gdf):
gdf['C'] = datetime(2018, 11, 5)
return gdf

df2 = df.groupby(['A']).apply(process)
print (df2)
A B C
0 a 2018-11-01 2018-11-05
1 b 2018-11-02 2018-11-05
2 c 2018-11-03 2018-11-05





share|improve this answer























    Your Answer






    StackExchange.ifUsing("editor", function () {
    StackExchange.using("externalEditor", function () {
    StackExchange.using("snippets", function () {
    StackExchange.snippets.init();
    });
    });
    }, "code-snippets");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "1"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53387552%2fpandas-groupby-apply-anomaly-with-datetime%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    0














    First it seems bug.



    In my opinion here is possible create new column for each group and return not Series, but gdp group:



    def process(gdf):
    gdf['C'] = datetime(2018, 11, 5)
    return gdf

    df2 = df.groupby(['A']).apply(process)
    print (df2)
    A B C
    0 a 2018-11-01 2018-11-05
    1 b 2018-11-02 2018-11-05
    2 c 2018-11-03 2018-11-05





    share|improve this answer




























      0














      First it seems bug.



      In my opinion here is possible create new column for each group and return not Series, but gdp group:



      def process(gdf):
      gdf['C'] = datetime(2018, 11, 5)
      return gdf

      df2 = df.groupby(['A']).apply(process)
      print (df2)
      A B C
      0 a 2018-11-01 2018-11-05
      1 b 2018-11-02 2018-11-05
      2 c 2018-11-03 2018-11-05





      share|improve this answer


























        0












        0








        0







        First it seems bug.



        In my opinion here is possible create new column for each group and return not Series, but gdp group:



        def process(gdf):
        gdf['C'] = datetime(2018, 11, 5)
        return gdf

        df2 = df.groupby(['A']).apply(process)
        print (df2)
        A B C
        0 a 2018-11-01 2018-11-05
        1 b 2018-11-02 2018-11-05
        2 c 2018-11-03 2018-11-05





        share|improve this answer













        First it seems bug.



        In my opinion here is possible create new column for each group and return not Series, but gdp group:



        def process(gdf):
        gdf['C'] = datetime(2018, 11, 5)
        return gdf

        df2 = df.groupby(['A']).apply(process)
        print (df2)
        A B C
        0 a 2018-11-01 2018-11-05
        1 b 2018-11-02 2018-11-05
        2 c 2018-11-03 2018-11-05






        share|improve this answer












        share|improve this answer



        share|improve this answer










        answered Nov 20 '18 at 6:50









        jezraeljezrael

        338k25288361




        338k25288361
































            draft saved

            draft discarded




















































            Thanks for contributing an answer to Stack Overflow!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53387552%2fpandas-groupby-apply-anomaly-with-datetime%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Guess what letter conforming each word

            Run scheduled task as local user group (not BUILTIN)

            Port of Spain