Pandas groupby apply anomaly with datetime
While experimenting Pandas in Jupyter, I noticed very strange symptom. I reduce it down to a bare minimum code that demonstrates the symptom:
import pandas as pd
import numpy as np
from datetime import datetime
df = pd.DataFrame({
'A': ['a', 'b', 'c'],
'B': [datetime(2018, 11, 1), datetime(2018, 11, 2), datetime(2018, 11, 3) ]
})
df
A B
0 a 2018-11-01
1 b 2018-11-02
2 c 2018-11-03
def process(gdf):
return pd.Series({
'C': datetime(2018, 11, 5)
})
df2 = df.groupby(['A']).apply(process).reset_index()
df2
A C
0 a 1541376000000000000
1 b 1541376000000000000
2 c 1541376000000000000
df2['C']
0 1541376000000000000
1 1541376000000000000
2 1541376000000000000
Name: C, dtype: int64
As you can see, the C
column ended up being int64
type instead of the expected datetime64[ns]
type. But if I don't have the B
column then C
column correctly ends up being datetime64[ns]
.
df = pd.DataFrame({
'A': ['a', 'b', 'c'],
# 'B': [datetime(2018, 11, 1), datetime(2018, 11, 2), datetime(2018, 11, 3) ]
})
df
A
0 a
1 b
2 c
def process(gdf):
return pd.Series({
'C': datetime(2018, 11, 5)
})
df2 = df.groupby(['A']).apply(process).reset_index()
df2
A C
0 a 2018-11-05
1 b 2018-11-05
2 c 2018-11-05
df2['C']
0 2018-11-05
1 2018-11-05
2 2018-11-05
Name: C, dtype: datetime64[ns]
I have no clue what is happening. Anyone any idea? I'm using Python 3.6 and Pandas 0.23.1
python pandas datetime group-by
add a comment |
While experimenting Pandas in Jupyter, I noticed very strange symptom. I reduce it down to a bare minimum code that demonstrates the symptom:
import pandas as pd
import numpy as np
from datetime import datetime
df = pd.DataFrame({
'A': ['a', 'b', 'c'],
'B': [datetime(2018, 11, 1), datetime(2018, 11, 2), datetime(2018, 11, 3) ]
})
df
A B
0 a 2018-11-01
1 b 2018-11-02
2 c 2018-11-03
def process(gdf):
return pd.Series({
'C': datetime(2018, 11, 5)
})
df2 = df.groupby(['A']).apply(process).reset_index()
df2
A C
0 a 1541376000000000000
1 b 1541376000000000000
2 c 1541376000000000000
df2['C']
0 1541376000000000000
1 1541376000000000000
2 1541376000000000000
Name: C, dtype: int64
As you can see, the C
column ended up being int64
type instead of the expected datetime64[ns]
type. But if I don't have the B
column then C
column correctly ends up being datetime64[ns]
.
df = pd.DataFrame({
'A': ['a', 'b', 'c'],
# 'B': [datetime(2018, 11, 1), datetime(2018, 11, 2), datetime(2018, 11, 3) ]
})
df
A
0 a
1 b
2 c
def process(gdf):
return pd.Series({
'C': datetime(2018, 11, 5)
})
df2 = df.groupby(['A']).apply(process).reset_index()
df2
A C
0 a 2018-11-05
1 b 2018-11-05
2 c 2018-11-05
df2['C']
0 2018-11-05
1 2018-11-05
2 2018-11-05
Name: C, dtype: datetime64[ns]
I have no clue what is happening. Anyone any idea? I'm using Python 3.6 and Pandas 0.23.1
python pandas datetime group-by
I am using Python 2.7 and I cannot reproduce it. Also the first output isdatetime
– Joe
Nov 20 '18 at 6:48
add a comment |
While experimenting Pandas in Jupyter, I noticed very strange symptom. I reduce it down to a bare minimum code that demonstrates the symptom:
import pandas as pd
import numpy as np
from datetime import datetime
df = pd.DataFrame({
'A': ['a', 'b', 'c'],
'B': [datetime(2018, 11, 1), datetime(2018, 11, 2), datetime(2018, 11, 3) ]
})
df
A B
0 a 2018-11-01
1 b 2018-11-02
2 c 2018-11-03
def process(gdf):
return pd.Series({
'C': datetime(2018, 11, 5)
})
df2 = df.groupby(['A']).apply(process).reset_index()
df2
A C
0 a 1541376000000000000
1 b 1541376000000000000
2 c 1541376000000000000
df2['C']
0 1541376000000000000
1 1541376000000000000
2 1541376000000000000
Name: C, dtype: int64
As you can see, the C
column ended up being int64
type instead of the expected datetime64[ns]
type. But if I don't have the B
column then C
column correctly ends up being datetime64[ns]
.
df = pd.DataFrame({
'A': ['a', 'b', 'c'],
# 'B': [datetime(2018, 11, 1), datetime(2018, 11, 2), datetime(2018, 11, 3) ]
})
df
A
0 a
1 b
2 c
def process(gdf):
return pd.Series({
'C': datetime(2018, 11, 5)
})
df2 = df.groupby(['A']).apply(process).reset_index()
df2
A C
0 a 2018-11-05
1 b 2018-11-05
2 c 2018-11-05
df2['C']
0 2018-11-05
1 2018-11-05
2 2018-11-05
Name: C, dtype: datetime64[ns]
I have no clue what is happening. Anyone any idea? I'm using Python 3.6 and Pandas 0.23.1
python pandas datetime group-by
While experimenting Pandas in Jupyter, I noticed very strange symptom. I reduce it down to a bare minimum code that demonstrates the symptom:
import pandas as pd
import numpy as np
from datetime import datetime
df = pd.DataFrame({
'A': ['a', 'b', 'c'],
'B': [datetime(2018, 11, 1), datetime(2018, 11, 2), datetime(2018, 11, 3) ]
})
df
A B
0 a 2018-11-01
1 b 2018-11-02
2 c 2018-11-03
def process(gdf):
return pd.Series({
'C': datetime(2018, 11, 5)
})
df2 = df.groupby(['A']).apply(process).reset_index()
df2
A C
0 a 1541376000000000000
1 b 1541376000000000000
2 c 1541376000000000000
df2['C']
0 1541376000000000000
1 1541376000000000000
2 1541376000000000000
Name: C, dtype: int64
As you can see, the C
column ended up being int64
type instead of the expected datetime64[ns]
type. But if I don't have the B
column then C
column correctly ends up being datetime64[ns]
.
df = pd.DataFrame({
'A': ['a', 'b', 'c'],
# 'B': [datetime(2018, 11, 1), datetime(2018, 11, 2), datetime(2018, 11, 3) ]
})
df
A
0 a
1 b
2 c
def process(gdf):
return pd.Series({
'C': datetime(2018, 11, 5)
})
df2 = df.groupby(['A']).apply(process).reset_index()
df2
A C
0 a 2018-11-05
1 b 2018-11-05
2 c 2018-11-05
df2['C']
0 2018-11-05
1 2018-11-05
2 2018-11-05
Name: C, dtype: datetime64[ns]
I have no clue what is happening. Anyone any idea? I'm using Python 3.6 and Pandas 0.23.1
python pandas datetime group-by
python pandas datetime group-by
asked Nov 20 '18 at 6:40
JakeJake
7182616
7182616
I am using Python 2.7 and I cannot reproduce it. Also the first output isdatetime
– Joe
Nov 20 '18 at 6:48
add a comment |
I am using Python 2.7 and I cannot reproduce it. Also the first output isdatetime
– Joe
Nov 20 '18 at 6:48
I am using Python 2.7 and I cannot reproduce it. Also the first output is
datetime
– Joe
Nov 20 '18 at 6:48
I am using Python 2.7 and I cannot reproduce it. Also the first output is
datetime
– Joe
Nov 20 '18 at 6:48
add a comment |
1 Answer
1
active
oldest
votes
First it seems bug.
In my opinion here is possible create new column for each group and return not Series, but gdp
group:
def process(gdf):
gdf['C'] = datetime(2018, 11, 5)
return gdf
df2 = df.groupby(['A']).apply(process)
print (df2)
A B C
0 a 2018-11-01 2018-11-05
1 b 2018-11-02 2018-11-05
2 c 2018-11-03 2018-11-05
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
StackExchange.using("externalEditor", function () {
StackExchange.using("snippets", function () {
StackExchange.snippets.init();
});
});
}, "code-snippets");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "1"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53387552%2fpandas-groupby-apply-anomaly-with-datetime%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
First it seems bug.
In my opinion here is possible create new column for each group and return not Series, but gdp
group:
def process(gdf):
gdf['C'] = datetime(2018, 11, 5)
return gdf
df2 = df.groupby(['A']).apply(process)
print (df2)
A B C
0 a 2018-11-01 2018-11-05
1 b 2018-11-02 2018-11-05
2 c 2018-11-03 2018-11-05
add a comment |
First it seems bug.
In my opinion here is possible create new column for each group and return not Series, but gdp
group:
def process(gdf):
gdf['C'] = datetime(2018, 11, 5)
return gdf
df2 = df.groupby(['A']).apply(process)
print (df2)
A B C
0 a 2018-11-01 2018-11-05
1 b 2018-11-02 2018-11-05
2 c 2018-11-03 2018-11-05
add a comment |
First it seems bug.
In my opinion here is possible create new column for each group and return not Series, but gdp
group:
def process(gdf):
gdf['C'] = datetime(2018, 11, 5)
return gdf
df2 = df.groupby(['A']).apply(process)
print (df2)
A B C
0 a 2018-11-01 2018-11-05
1 b 2018-11-02 2018-11-05
2 c 2018-11-03 2018-11-05
First it seems bug.
In my opinion here is possible create new column for each group and return not Series, but gdp
group:
def process(gdf):
gdf['C'] = datetime(2018, 11, 5)
return gdf
df2 = df.groupby(['A']).apply(process)
print (df2)
A B C
0 a 2018-11-01 2018-11-05
1 b 2018-11-02 2018-11-05
2 c 2018-11-03 2018-11-05
answered Nov 20 '18 at 6:50


jezraeljezrael
338k25288361
338k25288361
add a comment |
add a comment |
Thanks for contributing an answer to Stack Overflow!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53387552%2fpandas-groupby-apply-anomaly-with-datetime%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
I am using Python 2.7 and I cannot reproduce it. Also the first output is
datetime
– Joe
Nov 20 '18 at 6:48