Image generator missing positional argument for unet keras
I keep getting the following error for below code when I try to train the model: TypeError: fit_generator() missing 1 required positional argument: 'generator'
. For the life of me I can not figure out what is causing this error. x_train is an rgb image of shape (400, 256, 256, 3) and for y_train i have 10 output classes making it shape (400, 256, 256, 10). What is going wrong here?
If necessary the data can be downloaded with the following link:
https://www49.zippyshare.com/v/5pR3GPv3/file.html
import skimage
from skimage.io import imread, imshow, imread_collection, concatenate_images
from skimage.transform import resize
from skimage.morphology import label
import numpy as np
import matplotlib.pyplot as plt
from keras.models import Model
from keras.layers import Input, merge, Convolution2D, MaxPooling2D, UpSampling2D, Reshape, core, Dropout
from keras.optimizers import Adam
from keras.callbacks import ModelCheckpoint, LearningRateScheduler
from keras import backend as K
from sklearn.metrics import jaccard_similarity_score
from shapely.geometry import MultiPolygon, Polygon
import shapely.wkt
import shapely.affinity
from collections import defaultdict
from keras.preprocessing.image import ImageDataGenerator
from keras.utils.np_utils import to_categorical
from keras import utils as np_utils
import os
from keras.preprocessing.image import ImageDataGenerator
gen = ImageDataGenerator()
#Importing image and labels
labels = skimage.io.imread("ede_subset_293_wegen.tif")
images = skimage.io.imread("ede_subset_293_20180502_planetscope.tif")[...,:-1]
#scaling image
img_scaled = images / images.max()
#Make non-roads 0
labels[labels == 15] = 0
#Resizing image and mask and labels
img_scaled_resized = img_scaled[:6400, :6400 ]
print(img_scaled_resized.shape)
labels_resized = labels[:6400, :6400]
print(labels_resized.shape)
#splitting images
split_img = [
np.split(array, 25, axis=0)
for array in np.split(img_scaled_resized, 25, axis=1)
]
split_img[-1][-1].shape
#splitting labels
split_labels = [
np.split(array, 25, axis=0)
for array in np.split(labels_resized, 25, axis=1)
]
#Convert to np.array
split_labels = np.array(split_labels)
split_img = np.array(split_img)
train_images = np.reshape(split_img, (625, 256, 256, 3))
train_labels = np.reshape(split_labels, (625, 256, 256, 10))
train_labels = np_utils.to_categorical(train_labels, 10)
#Create train test and val
x_train = train_images[:400,:,:,:]
x_val = train_images[400:500,:,:,:]
x_test = train_images[500:625,:,:,:]
y_train = train_labels[:400,:,:]
y_val = train_labels[400:500,:,:]
y_test = train_labels[500:625,:,:]
# Create image generator (credit to Ioannis Nasios)
data_gen_args = dict(rotation_range=5,
width_shift_range=0.1,
height_shift_range=0.1,
validation_split=0.2)
image_datagen = ImageDataGenerator(**data_gen_args)
seed = 1
batch_size = 100
def XYaugmentGenerator(X1, y, seed, batch_size):
genX1 = gen.flow(X1, y, batch_size=batch_size, seed=seed)
genX2 = gen.flow(y, X1, batch_size=batch_size, seed=seed)
while True:
X1i = genX1.next()
X2i = genX2.next()
yield X1i[0], X2i[0]
# Train model
Model.fit_generator(XYaugmentGenerator(x_train, y_train, seed, batch_size), steps_per_epoch=np.ceil(float(len(x_train)) / float(batch_size)),
validation_data = XYaugmentGenerator(x_val, y_val,seed, batch_size),
validation_steps = np.ceil(float(len(x_val)) / float(batch_size))
, shuffle=True, epochs=20)
python machine-learning keras generator conv-neural-network
add a comment |
I keep getting the following error for below code when I try to train the model: TypeError: fit_generator() missing 1 required positional argument: 'generator'
. For the life of me I can not figure out what is causing this error. x_train is an rgb image of shape (400, 256, 256, 3) and for y_train i have 10 output classes making it shape (400, 256, 256, 10). What is going wrong here?
If necessary the data can be downloaded with the following link:
https://www49.zippyshare.com/v/5pR3GPv3/file.html
import skimage
from skimage.io import imread, imshow, imread_collection, concatenate_images
from skimage.transform import resize
from skimage.morphology import label
import numpy as np
import matplotlib.pyplot as plt
from keras.models import Model
from keras.layers import Input, merge, Convolution2D, MaxPooling2D, UpSampling2D, Reshape, core, Dropout
from keras.optimizers import Adam
from keras.callbacks import ModelCheckpoint, LearningRateScheduler
from keras import backend as K
from sklearn.metrics import jaccard_similarity_score
from shapely.geometry import MultiPolygon, Polygon
import shapely.wkt
import shapely.affinity
from collections import defaultdict
from keras.preprocessing.image import ImageDataGenerator
from keras.utils.np_utils import to_categorical
from keras import utils as np_utils
import os
from keras.preprocessing.image import ImageDataGenerator
gen = ImageDataGenerator()
#Importing image and labels
labels = skimage.io.imread("ede_subset_293_wegen.tif")
images = skimage.io.imread("ede_subset_293_20180502_planetscope.tif")[...,:-1]
#scaling image
img_scaled = images / images.max()
#Make non-roads 0
labels[labels == 15] = 0
#Resizing image and mask and labels
img_scaled_resized = img_scaled[:6400, :6400 ]
print(img_scaled_resized.shape)
labels_resized = labels[:6400, :6400]
print(labels_resized.shape)
#splitting images
split_img = [
np.split(array, 25, axis=0)
for array in np.split(img_scaled_resized, 25, axis=1)
]
split_img[-1][-1].shape
#splitting labels
split_labels = [
np.split(array, 25, axis=0)
for array in np.split(labels_resized, 25, axis=1)
]
#Convert to np.array
split_labels = np.array(split_labels)
split_img = np.array(split_img)
train_images = np.reshape(split_img, (625, 256, 256, 3))
train_labels = np.reshape(split_labels, (625, 256, 256, 10))
train_labels = np_utils.to_categorical(train_labels, 10)
#Create train test and val
x_train = train_images[:400,:,:,:]
x_val = train_images[400:500,:,:,:]
x_test = train_images[500:625,:,:,:]
y_train = train_labels[:400,:,:]
y_val = train_labels[400:500,:,:]
y_test = train_labels[500:625,:,:]
# Create image generator (credit to Ioannis Nasios)
data_gen_args = dict(rotation_range=5,
width_shift_range=0.1,
height_shift_range=0.1,
validation_split=0.2)
image_datagen = ImageDataGenerator(**data_gen_args)
seed = 1
batch_size = 100
def XYaugmentGenerator(X1, y, seed, batch_size):
genX1 = gen.flow(X1, y, batch_size=batch_size, seed=seed)
genX2 = gen.flow(y, X1, batch_size=batch_size, seed=seed)
while True:
X1i = genX1.next()
X2i = genX2.next()
yield X1i[0], X2i[0]
# Train model
Model.fit_generator(XYaugmentGenerator(x_train, y_train, seed, batch_size), steps_per_epoch=np.ceil(float(len(x_train)) / float(batch_size)),
validation_data = XYaugmentGenerator(x_val, y_val,seed, batch_size),
validation_steps = np.ceil(float(len(x_val)) / float(batch_size))
, shuffle=True, epochs=20)
python machine-learning keras generator conv-neural-network
add a comment |
I keep getting the following error for below code when I try to train the model: TypeError: fit_generator() missing 1 required positional argument: 'generator'
. For the life of me I can not figure out what is causing this error. x_train is an rgb image of shape (400, 256, 256, 3) and for y_train i have 10 output classes making it shape (400, 256, 256, 10). What is going wrong here?
If necessary the data can be downloaded with the following link:
https://www49.zippyshare.com/v/5pR3GPv3/file.html
import skimage
from skimage.io import imread, imshow, imread_collection, concatenate_images
from skimage.transform import resize
from skimage.morphology import label
import numpy as np
import matplotlib.pyplot as plt
from keras.models import Model
from keras.layers import Input, merge, Convolution2D, MaxPooling2D, UpSampling2D, Reshape, core, Dropout
from keras.optimizers import Adam
from keras.callbacks import ModelCheckpoint, LearningRateScheduler
from keras import backend as K
from sklearn.metrics import jaccard_similarity_score
from shapely.geometry import MultiPolygon, Polygon
import shapely.wkt
import shapely.affinity
from collections import defaultdict
from keras.preprocessing.image import ImageDataGenerator
from keras.utils.np_utils import to_categorical
from keras import utils as np_utils
import os
from keras.preprocessing.image import ImageDataGenerator
gen = ImageDataGenerator()
#Importing image and labels
labels = skimage.io.imread("ede_subset_293_wegen.tif")
images = skimage.io.imread("ede_subset_293_20180502_planetscope.tif")[...,:-1]
#scaling image
img_scaled = images / images.max()
#Make non-roads 0
labels[labels == 15] = 0
#Resizing image and mask and labels
img_scaled_resized = img_scaled[:6400, :6400 ]
print(img_scaled_resized.shape)
labels_resized = labels[:6400, :6400]
print(labels_resized.shape)
#splitting images
split_img = [
np.split(array, 25, axis=0)
for array in np.split(img_scaled_resized, 25, axis=1)
]
split_img[-1][-1].shape
#splitting labels
split_labels = [
np.split(array, 25, axis=0)
for array in np.split(labels_resized, 25, axis=1)
]
#Convert to np.array
split_labels = np.array(split_labels)
split_img = np.array(split_img)
train_images = np.reshape(split_img, (625, 256, 256, 3))
train_labels = np.reshape(split_labels, (625, 256, 256, 10))
train_labels = np_utils.to_categorical(train_labels, 10)
#Create train test and val
x_train = train_images[:400,:,:,:]
x_val = train_images[400:500,:,:,:]
x_test = train_images[500:625,:,:,:]
y_train = train_labels[:400,:,:]
y_val = train_labels[400:500,:,:]
y_test = train_labels[500:625,:,:]
# Create image generator (credit to Ioannis Nasios)
data_gen_args = dict(rotation_range=5,
width_shift_range=0.1,
height_shift_range=0.1,
validation_split=0.2)
image_datagen = ImageDataGenerator(**data_gen_args)
seed = 1
batch_size = 100
def XYaugmentGenerator(X1, y, seed, batch_size):
genX1 = gen.flow(X1, y, batch_size=batch_size, seed=seed)
genX2 = gen.flow(y, X1, batch_size=batch_size, seed=seed)
while True:
X1i = genX1.next()
X2i = genX2.next()
yield X1i[0], X2i[0]
# Train model
Model.fit_generator(XYaugmentGenerator(x_train, y_train, seed, batch_size), steps_per_epoch=np.ceil(float(len(x_train)) / float(batch_size)),
validation_data = XYaugmentGenerator(x_val, y_val,seed, batch_size),
validation_steps = np.ceil(float(len(x_val)) / float(batch_size))
, shuffle=True, epochs=20)
python machine-learning keras generator conv-neural-network
I keep getting the following error for below code when I try to train the model: TypeError: fit_generator() missing 1 required positional argument: 'generator'
. For the life of me I can not figure out what is causing this error. x_train is an rgb image of shape (400, 256, 256, 3) and for y_train i have 10 output classes making it shape (400, 256, 256, 10). What is going wrong here?
If necessary the data can be downloaded with the following link:
https://www49.zippyshare.com/v/5pR3GPv3/file.html
import skimage
from skimage.io import imread, imshow, imread_collection, concatenate_images
from skimage.transform import resize
from skimage.morphology import label
import numpy as np
import matplotlib.pyplot as plt
from keras.models import Model
from keras.layers import Input, merge, Convolution2D, MaxPooling2D, UpSampling2D, Reshape, core, Dropout
from keras.optimizers import Adam
from keras.callbacks import ModelCheckpoint, LearningRateScheduler
from keras import backend as K
from sklearn.metrics import jaccard_similarity_score
from shapely.geometry import MultiPolygon, Polygon
import shapely.wkt
import shapely.affinity
from collections import defaultdict
from keras.preprocessing.image import ImageDataGenerator
from keras.utils.np_utils import to_categorical
from keras import utils as np_utils
import os
from keras.preprocessing.image import ImageDataGenerator
gen = ImageDataGenerator()
#Importing image and labels
labels = skimage.io.imread("ede_subset_293_wegen.tif")
images = skimage.io.imread("ede_subset_293_20180502_planetscope.tif")[...,:-1]
#scaling image
img_scaled = images / images.max()
#Make non-roads 0
labels[labels == 15] = 0
#Resizing image and mask and labels
img_scaled_resized = img_scaled[:6400, :6400 ]
print(img_scaled_resized.shape)
labels_resized = labels[:6400, :6400]
print(labels_resized.shape)
#splitting images
split_img = [
np.split(array, 25, axis=0)
for array in np.split(img_scaled_resized, 25, axis=1)
]
split_img[-1][-1].shape
#splitting labels
split_labels = [
np.split(array, 25, axis=0)
for array in np.split(labels_resized, 25, axis=1)
]
#Convert to np.array
split_labels = np.array(split_labels)
split_img = np.array(split_img)
train_images = np.reshape(split_img, (625, 256, 256, 3))
train_labels = np.reshape(split_labels, (625, 256, 256, 10))
train_labels = np_utils.to_categorical(train_labels, 10)
#Create train test and val
x_train = train_images[:400,:,:,:]
x_val = train_images[400:500,:,:,:]
x_test = train_images[500:625,:,:,:]
y_train = train_labels[:400,:,:]
y_val = train_labels[400:500,:,:]
y_test = train_labels[500:625,:,:]
# Create image generator (credit to Ioannis Nasios)
data_gen_args = dict(rotation_range=5,
width_shift_range=0.1,
height_shift_range=0.1,
validation_split=0.2)
image_datagen = ImageDataGenerator(**data_gen_args)
seed = 1
batch_size = 100
def XYaugmentGenerator(X1, y, seed, batch_size):
genX1 = gen.flow(X1, y, batch_size=batch_size, seed=seed)
genX2 = gen.flow(y, X1, batch_size=batch_size, seed=seed)
while True:
X1i = genX1.next()
X2i = genX2.next()
yield X1i[0], X2i[0]
# Train model
Model.fit_generator(XYaugmentGenerator(x_train, y_train, seed, batch_size), steps_per_epoch=np.ceil(float(len(x_train)) / float(batch_size)),
validation_data = XYaugmentGenerator(x_val, y_val,seed, batch_size),
validation_steps = np.ceil(float(len(x_val)) / float(batch_size))
, shuffle=True, epochs=20)
python machine-learning keras generator conv-neural-network
python machine-learning keras generator conv-neural-network
edited Nov 21 '18 at 12:00
Ioannis Nasios
3,79431035
3,79431035
asked Nov 21 '18 at 10:36
Eeuwigestudent1Eeuwigestudent1
467
467
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
You have a few mistakes in your code, but considering your error:
TypeError: fit_generator() missing 1 required positional argument:
'generator'
this is caused because fit_generator call XYaugmentGenerator but no augmentation generator is called inside.
gen.flow(...
won't work because gen is not declared. You should either rename image_datagen to gen as:
gen = ImageDataGenerator(**data_gen_args)
or, replace gen with image_datagen
genX1 = image_datagen.flow(X1, y, batch_size=batch_size, seed=seed)
genX2 = image_datagen.flow(y, X1, batch_size=batch_size, seed=seed)
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
StackExchange.using("externalEditor", function () {
StackExchange.using("snippets", function () {
StackExchange.snippets.init();
});
});
}, "code-snippets");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "1"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53410205%2fimage-generator-missing-positional-argument-for-unet-keras%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
You have a few mistakes in your code, but considering your error:
TypeError: fit_generator() missing 1 required positional argument:
'generator'
this is caused because fit_generator call XYaugmentGenerator but no augmentation generator is called inside.
gen.flow(...
won't work because gen is not declared. You should either rename image_datagen to gen as:
gen = ImageDataGenerator(**data_gen_args)
or, replace gen with image_datagen
genX1 = image_datagen.flow(X1, y, batch_size=batch_size, seed=seed)
genX2 = image_datagen.flow(y, X1, batch_size=batch_size, seed=seed)
add a comment |
You have a few mistakes in your code, but considering your error:
TypeError: fit_generator() missing 1 required positional argument:
'generator'
this is caused because fit_generator call XYaugmentGenerator but no augmentation generator is called inside.
gen.flow(...
won't work because gen is not declared. You should either rename image_datagen to gen as:
gen = ImageDataGenerator(**data_gen_args)
or, replace gen with image_datagen
genX1 = image_datagen.flow(X1, y, batch_size=batch_size, seed=seed)
genX2 = image_datagen.flow(y, X1, batch_size=batch_size, seed=seed)
add a comment |
You have a few mistakes in your code, but considering your error:
TypeError: fit_generator() missing 1 required positional argument:
'generator'
this is caused because fit_generator call XYaugmentGenerator but no augmentation generator is called inside.
gen.flow(...
won't work because gen is not declared. You should either rename image_datagen to gen as:
gen = ImageDataGenerator(**data_gen_args)
or, replace gen with image_datagen
genX1 = image_datagen.flow(X1, y, batch_size=batch_size, seed=seed)
genX2 = image_datagen.flow(y, X1, batch_size=batch_size, seed=seed)
You have a few mistakes in your code, but considering your error:
TypeError: fit_generator() missing 1 required positional argument:
'generator'
this is caused because fit_generator call XYaugmentGenerator but no augmentation generator is called inside.
gen.flow(...
won't work because gen is not declared. You should either rename image_datagen to gen as:
gen = ImageDataGenerator(**data_gen_args)
or, replace gen with image_datagen
genX1 = image_datagen.flow(X1, y, batch_size=batch_size, seed=seed)
genX2 = image_datagen.flow(y, X1, batch_size=batch_size, seed=seed)
edited Nov 21 '18 at 11:06
answered Nov 21 '18 at 11:00
Ioannis NasiosIoannis Nasios
3,79431035
3,79431035
add a comment |
add a comment |
Thanks for contributing an answer to Stack Overflow!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53410205%2fimage-generator-missing-positional-argument-for-unet-keras%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown