Limit to compare growth of function
I wanted to compare growth of two functions
$F_1:n^{,lg,lg n}$
$F_2:(3/2)^n$
$lim_{n to infty} frac{n^{lglg n}}{(3/2)^n}$
After differentiating it $lg , lg n$ times I get
$lim_{n to infty} frac{(lglg n)!}{(lg(3/2))^{lglg n}(3/2)^n}$
How do I proceed forward?
limits
add a comment |
I wanted to compare growth of two functions
$F_1:n^{,lg,lg n}$
$F_2:(3/2)^n$
$lim_{n to infty} frac{n^{lglg n}}{(3/2)^n}$
After differentiating it $lg , lg n$ times I get
$lim_{n to infty} frac{(lglg n)!}{(lg(3/2))^{lglg n}(3/2)^n}$
How do I proceed forward?
limits
add a comment |
I wanted to compare growth of two functions
$F_1:n^{,lg,lg n}$
$F_2:(3/2)^n$
$lim_{n to infty} frac{n^{lglg n}}{(3/2)^n}$
After differentiating it $lg , lg n$ times I get
$lim_{n to infty} frac{(lglg n)!}{(lg(3/2))^{lglg n}(3/2)^n}$
How do I proceed forward?
limits
I wanted to compare growth of two functions
$F_1:n^{,lg,lg n}$
$F_2:(3/2)^n$
$lim_{n to infty} frac{n^{lglg n}}{(3/2)^n}$
After differentiating it $lg , lg n$ times I get
$lim_{n to infty} frac{(lglg n)!}{(lg(3/2))^{lglg n}(3/2)^n}$
How do I proceed forward?
limits
limits
edited Nov 15 '18 at 9:51
user376343
2,9132823
2,9132823
asked Nov 15 '18 at 5:36
user3767495user3767495
3448
3448
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
Consider
$$y=frac{F_1}{F_2}=left(frac{3}{2}right)^{-n} n^{log (log (n))}$$ and take logarithms
$$log(y)={log (log (n))}times log(n)-nlog left(frac{3}{2}right)=nleft({log (log (n))}times frac {log(n)}n-log left(frac{3}{2}right) right)$$ When $n to infty$, since $frac {log(n)}n to0 $, you have
$$log(y) sim -n log left(frac{3}{2}right) to -inftyimplies y=e^{log(n)} to 0$$
add a comment |
$(ln ln n) (ln n) - n ln (3/2)=n[frac {(ln ln n) (ln n)} n - ln (3/2)] to -infty$ because $frac {(ln ln n) (ln n)} n to 0$. [ Use L'Hopital's Rule for this]. Taking exponential we get $e^{(ln ln n) (ln n) } /(3/2)^{n} to 0$. This is same as $frac {n^{ln ln n}} {(3/2)^{n}} to 0$
Same time, same answer !
– Claude Leibovici
Nov 15 '18 at 6:06
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2999277%2flimit-to-compare-growth-of-function%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
Consider
$$y=frac{F_1}{F_2}=left(frac{3}{2}right)^{-n} n^{log (log (n))}$$ and take logarithms
$$log(y)={log (log (n))}times log(n)-nlog left(frac{3}{2}right)=nleft({log (log (n))}times frac {log(n)}n-log left(frac{3}{2}right) right)$$ When $n to infty$, since $frac {log(n)}n to0 $, you have
$$log(y) sim -n log left(frac{3}{2}right) to -inftyimplies y=e^{log(n)} to 0$$
add a comment |
Consider
$$y=frac{F_1}{F_2}=left(frac{3}{2}right)^{-n} n^{log (log (n))}$$ and take logarithms
$$log(y)={log (log (n))}times log(n)-nlog left(frac{3}{2}right)=nleft({log (log (n))}times frac {log(n)}n-log left(frac{3}{2}right) right)$$ When $n to infty$, since $frac {log(n)}n to0 $, you have
$$log(y) sim -n log left(frac{3}{2}right) to -inftyimplies y=e^{log(n)} to 0$$
add a comment |
Consider
$$y=frac{F_1}{F_2}=left(frac{3}{2}right)^{-n} n^{log (log (n))}$$ and take logarithms
$$log(y)={log (log (n))}times log(n)-nlog left(frac{3}{2}right)=nleft({log (log (n))}times frac {log(n)}n-log left(frac{3}{2}right) right)$$ When $n to infty$, since $frac {log(n)}n to0 $, you have
$$log(y) sim -n log left(frac{3}{2}right) to -inftyimplies y=e^{log(n)} to 0$$
Consider
$$y=frac{F_1}{F_2}=left(frac{3}{2}right)^{-n} n^{log (log (n))}$$ and take logarithms
$$log(y)={log (log (n))}times log(n)-nlog left(frac{3}{2}right)=nleft({log (log (n))}times frac {log(n)}n-log left(frac{3}{2}right) right)$$ When $n to infty$, since $frac {log(n)}n to0 $, you have
$$log(y) sim -n log left(frac{3}{2}right) to -inftyimplies y=e^{log(n)} to 0$$
answered Nov 15 '18 at 6:06
Claude LeiboviciClaude Leibovici
119k1157132
119k1157132
add a comment |
add a comment |
$(ln ln n) (ln n) - n ln (3/2)=n[frac {(ln ln n) (ln n)} n - ln (3/2)] to -infty$ because $frac {(ln ln n) (ln n)} n to 0$. [ Use L'Hopital's Rule for this]. Taking exponential we get $e^{(ln ln n) (ln n) } /(3/2)^{n} to 0$. This is same as $frac {n^{ln ln n}} {(3/2)^{n}} to 0$
Same time, same answer !
– Claude Leibovici
Nov 15 '18 at 6:06
add a comment |
$(ln ln n) (ln n) - n ln (3/2)=n[frac {(ln ln n) (ln n)} n - ln (3/2)] to -infty$ because $frac {(ln ln n) (ln n)} n to 0$. [ Use L'Hopital's Rule for this]. Taking exponential we get $e^{(ln ln n) (ln n) } /(3/2)^{n} to 0$. This is same as $frac {n^{ln ln n}} {(3/2)^{n}} to 0$
Same time, same answer !
– Claude Leibovici
Nov 15 '18 at 6:06
add a comment |
$(ln ln n) (ln n) - n ln (3/2)=n[frac {(ln ln n) (ln n)} n - ln (3/2)] to -infty$ because $frac {(ln ln n) (ln n)} n to 0$. [ Use L'Hopital's Rule for this]. Taking exponential we get $e^{(ln ln n) (ln n) } /(3/2)^{n} to 0$. This is same as $frac {n^{ln ln n}} {(3/2)^{n}} to 0$
$(ln ln n) (ln n) - n ln (3/2)=n[frac {(ln ln n) (ln n)} n - ln (3/2)] to -infty$ because $frac {(ln ln n) (ln n)} n to 0$. [ Use L'Hopital's Rule for this]. Taking exponential we get $e^{(ln ln n) (ln n) } /(3/2)^{n} to 0$. This is same as $frac {n^{ln ln n}} {(3/2)^{n}} to 0$
answered Nov 15 '18 at 6:00
Kavi Rama MurthyKavi Rama Murthy
51.8k32055
51.8k32055
Same time, same answer !
– Claude Leibovici
Nov 15 '18 at 6:06
add a comment |
Same time, same answer !
– Claude Leibovici
Nov 15 '18 at 6:06
Same time, same answer !
– Claude Leibovici
Nov 15 '18 at 6:06
Same time, same answer !
– Claude Leibovici
Nov 15 '18 at 6:06
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2999277%2flimit-to-compare-growth-of-function%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown