couldn't run embedding network Keras with multiplue input
I have tried to run simple keras model with one embedding layer with 9 inputs. But I always get two errors, depending the layer after embedding.
I tried to use 2 different representations of data, but I get the same.
Now, what I have:
1.I'm using my own fit generator, which yeild data:
(list of shapes of input data) -
[(25,), (25,), (25,), (25, 24), (25, 11), (25, 10), (25, 28), (25, 8), (25, 7)]
features = [['id1',1], ['id2',1],
['id3',1], ['id4',24],
['id5',11], ['id6',10], ['id7',28], ['id8',8], ['id9',7]]
embeddings =
inputs =
for idx, feature in enumerate(features):
meta_input = Input(shape=(feature[1],), name = feature[0] + '_input')
sqrt = int(np.sqrt(feature[1]))
embedding = Embedding(feature[1], 1, input_length=1,name = feature[0] + '_embed')(meta_input)
fl = Flatten()(embedding)
embeddings.append(fl)
inputs.append(meta_input)
x = Concatenate()(embeddings)
dense_meta_1 = Dense(256, activation='relu')(x) #x
drop_meta = Dropout(0.2)(dense_meta_1)
dense_meta_2 = Dense(1)(drop_meta)
model = Model(inputs, dense_meta_2)
model.compile(optimizer='Adam', loss='mean_squared_error', metrics=
['mae'])
history = model.fit_generator(my_gen_v2(batch_size, batch_folder, steps), epochs=1, steps_per_epoch=steps,
max_queue_size=1)
so when I use flatten layers - I got this message (some part):
InvalidArgumentError: Matrix size-incompatible: In[0]: [25,91], In[1]: [9,256]
[[node dense_25/MatMul (defined at /home/human/anaconda3/lib/python3.6/site-packages/keras/backend/tensorflow_backend.py:1076) = MatMul[T=DT_FLOAT, _class=["loc:@training_7/Adam/gradients/dense_25/MatMul_grad/MatMul"], transpose_a=false, transpose_b=false, _device="/job:localhost/replica:0/task:0/device:GPU:0"](concatenate_16/concat, dense_25/kernel/read)]]
[[{{node metrics_11/mean_absolute_error/Mean_1/_1219}} = _Recvclient_terminated=false, recv_device="/job:localhost/replica:0/task:0/device:CPU:0", send_device="/job:localhost/replica:0/task:0/device:GPU:0", send_device_incarnation=1, tensor_name="edge_1116_metrics_11/mean_absolute_error/Mean_1", tensor_type=DT_FLOAT, _device="/job:localhost/replica:0/task:0/device:CPU:0"]]
but when I use Reshape layers:
embedding = Reshape(target_shape=(1,), name = feature[0] + '_reshape')(embedding)
I'v got this:
InvalidArgumentError: Input to reshape is a tensor with 600 values, but the requested shape has 25
[[node race_reshape/Reshape (defined at /home/human/anaconda3/lib/python3.6/site-packages/keras/backend/tensorflow_backend.py:1898) = Reshape[T=DT_FLOAT, Tshape=DT_INT32, _device="/job:localhost/replica:0/task:0/device:GPU:0"](race_embed_16/GatherV2, race_reshape/Reshape/shape)]]
[[{{node metrics_12/mean_absolute_error/Mean_1/_1417}} = _Recvclient_terminated=false, recv_device="/job:localhost/replica:0/task:0/device:CPU:0", send_device="/job:localhost/replica:0/task:0/device:GPU:0", send_device_incarnation=1, tensor_name="edge_1098_metrics_12/mean_absolute_error/Mean_1", tensor_type=DT_FLOAT, _device="/job:localhost/replica:0/task:0/device:CPU:0"]]
There are no simillar questions on stackoverflow, only about images shapes. Please help me resolve this, coz I spend a lot of time for this(
tensorflow keras
add a comment |
I have tried to run simple keras model with one embedding layer with 9 inputs. But I always get two errors, depending the layer after embedding.
I tried to use 2 different representations of data, but I get the same.
Now, what I have:
1.I'm using my own fit generator, which yeild data:
(list of shapes of input data) -
[(25,), (25,), (25,), (25, 24), (25, 11), (25, 10), (25, 28), (25, 8), (25, 7)]
features = [['id1',1], ['id2',1],
['id3',1], ['id4',24],
['id5',11], ['id6',10], ['id7',28], ['id8',8], ['id9',7]]
embeddings =
inputs =
for idx, feature in enumerate(features):
meta_input = Input(shape=(feature[1],), name = feature[0] + '_input')
sqrt = int(np.sqrt(feature[1]))
embedding = Embedding(feature[1], 1, input_length=1,name = feature[0] + '_embed')(meta_input)
fl = Flatten()(embedding)
embeddings.append(fl)
inputs.append(meta_input)
x = Concatenate()(embeddings)
dense_meta_1 = Dense(256, activation='relu')(x) #x
drop_meta = Dropout(0.2)(dense_meta_1)
dense_meta_2 = Dense(1)(drop_meta)
model = Model(inputs, dense_meta_2)
model.compile(optimizer='Adam', loss='mean_squared_error', metrics=
['mae'])
history = model.fit_generator(my_gen_v2(batch_size, batch_folder, steps), epochs=1, steps_per_epoch=steps,
max_queue_size=1)
so when I use flatten layers - I got this message (some part):
InvalidArgumentError: Matrix size-incompatible: In[0]: [25,91], In[1]: [9,256]
[[node dense_25/MatMul (defined at /home/human/anaconda3/lib/python3.6/site-packages/keras/backend/tensorflow_backend.py:1076) = MatMul[T=DT_FLOAT, _class=["loc:@training_7/Adam/gradients/dense_25/MatMul_grad/MatMul"], transpose_a=false, transpose_b=false, _device="/job:localhost/replica:0/task:0/device:GPU:0"](concatenate_16/concat, dense_25/kernel/read)]]
[[{{node metrics_11/mean_absolute_error/Mean_1/_1219}} = _Recvclient_terminated=false, recv_device="/job:localhost/replica:0/task:0/device:CPU:0", send_device="/job:localhost/replica:0/task:0/device:GPU:0", send_device_incarnation=1, tensor_name="edge_1116_metrics_11/mean_absolute_error/Mean_1", tensor_type=DT_FLOAT, _device="/job:localhost/replica:0/task:0/device:CPU:0"]]
but when I use Reshape layers:
embedding = Reshape(target_shape=(1,), name = feature[0] + '_reshape')(embedding)
I'v got this:
InvalidArgumentError: Input to reshape is a tensor with 600 values, but the requested shape has 25
[[node race_reshape/Reshape (defined at /home/human/anaconda3/lib/python3.6/site-packages/keras/backend/tensorflow_backend.py:1898) = Reshape[T=DT_FLOAT, Tshape=DT_INT32, _device="/job:localhost/replica:0/task:0/device:GPU:0"](race_embed_16/GatherV2, race_reshape/Reshape/shape)]]
[[{{node metrics_12/mean_absolute_error/Mean_1/_1417}} = _Recvclient_terminated=false, recv_device="/job:localhost/replica:0/task:0/device:CPU:0", send_device="/job:localhost/replica:0/task:0/device:GPU:0", send_device_incarnation=1, tensor_name="edge_1098_metrics_12/mean_absolute_error/Mean_1", tensor_type=DT_FLOAT, _device="/job:localhost/replica:0/task:0/device:CPU:0"]]
There are no simillar questions on stackoverflow, only about images shapes. Please help me resolve this, coz I spend a lot of time for this(
tensorflow keras
add a comment |
I have tried to run simple keras model with one embedding layer with 9 inputs. But I always get two errors, depending the layer after embedding.
I tried to use 2 different representations of data, but I get the same.
Now, what I have:
1.I'm using my own fit generator, which yeild data:
(list of shapes of input data) -
[(25,), (25,), (25,), (25, 24), (25, 11), (25, 10), (25, 28), (25, 8), (25, 7)]
features = [['id1',1], ['id2',1],
['id3',1], ['id4',24],
['id5',11], ['id6',10], ['id7',28], ['id8',8], ['id9',7]]
embeddings =
inputs =
for idx, feature in enumerate(features):
meta_input = Input(shape=(feature[1],), name = feature[0] + '_input')
sqrt = int(np.sqrt(feature[1]))
embedding = Embedding(feature[1], 1, input_length=1,name = feature[0] + '_embed')(meta_input)
fl = Flatten()(embedding)
embeddings.append(fl)
inputs.append(meta_input)
x = Concatenate()(embeddings)
dense_meta_1 = Dense(256, activation='relu')(x) #x
drop_meta = Dropout(0.2)(dense_meta_1)
dense_meta_2 = Dense(1)(drop_meta)
model = Model(inputs, dense_meta_2)
model.compile(optimizer='Adam', loss='mean_squared_error', metrics=
['mae'])
history = model.fit_generator(my_gen_v2(batch_size, batch_folder, steps), epochs=1, steps_per_epoch=steps,
max_queue_size=1)
so when I use flatten layers - I got this message (some part):
InvalidArgumentError: Matrix size-incompatible: In[0]: [25,91], In[1]: [9,256]
[[node dense_25/MatMul (defined at /home/human/anaconda3/lib/python3.6/site-packages/keras/backend/tensorflow_backend.py:1076) = MatMul[T=DT_FLOAT, _class=["loc:@training_7/Adam/gradients/dense_25/MatMul_grad/MatMul"], transpose_a=false, transpose_b=false, _device="/job:localhost/replica:0/task:0/device:GPU:0"](concatenate_16/concat, dense_25/kernel/read)]]
[[{{node metrics_11/mean_absolute_error/Mean_1/_1219}} = _Recvclient_terminated=false, recv_device="/job:localhost/replica:0/task:0/device:CPU:0", send_device="/job:localhost/replica:0/task:0/device:GPU:0", send_device_incarnation=1, tensor_name="edge_1116_metrics_11/mean_absolute_error/Mean_1", tensor_type=DT_FLOAT, _device="/job:localhost/replica:0/task:0/device:CPU:0"]]
but when I use Reshape layers:
embedding = Reshape(target_shape=(1,), name = feature[0] + '_reshape')(embedding)
I'v got this:
InvalidArgumentError: Input to reshape is a tensor with 600 values, but the requested shape has 25
[[node race_reshape/Reshape (defined at /home/human/anaconda3/lib/python3.6/site-packages/keras/backend/tensorflow_backend.py:1898) = Reshape[T=DT_FLOAT, Tshape=DT_INT32, _device="/job:localhost/replica:0/task:0/device:GPU:0"](race_embed_16/GatherV2, race_reshape/Reshape/shape)]]
[[{{node metrics_12/mean_absolute_error/Mean_1/_1417}} = _Recvclient_terminated=false, recv_device="/job:localhost/replica:0/task:0/device:CPU:0", send_device="/job:localhost/replica:0/task:0/device:GPU:0", send_device_incarnation=1, tensor_name="edge_1098_metrics_12/mean_absolute_error/Mean_1", tensor_type=DT_FLOAT, _device="/job:localhost/replica:0/task:0/device:CPU:0"]]
There are no simillar questions on stackoverflow, only about images shapes. Please help me resolve this, coz I spend a lot of time for this(
tensorflow keras
I have tried to run simple keras model with one embedding layer with 9 inputs. But I always get two errors, depending the layer after embedding.
I tried to use 2 different representations of data, but I get the same.
Now, what I have:
1.I'm using my own fit generator, which yeild data:
(list of shapes of input data) -
[(25,), (25,), (25,), (25, 24), (25, 11), (25, 10), (25, 28), (25, 8), (25, 7)]
features = [['id1',1], ['id2',1],
['id3',1], ['id4',24],
['id5',11], ['id6',10], ['id7',28], ['id8',8], ['id9',7]]
embeddings =
inputs =
for idx, feature in enumerate(features):
meta_input = Input(shape=(feature[1],), name = feature[0] + '_input')
sqrt = int(np.sqrt(feature[1]))
embedding = Embedding(feature[1], 1, input_length=1,name = feature[0] + '_embed')(meta_input)
fl = Flatten()(embedding)
embeddings.append(fl)
inputs.append(meta_input)
x = Concatenate()(embeddings)
dense_meta_1 = Dense(256, activation='relu')(x) #x
drop_meta = Dropout(0.2)(dense_meta_1)
dense_meta_2 = Dense(1)(drop_meta)
model = Model(inputs, dense_meta_2)
model.compile(optimizer='Adam', loss='mean_squared_error', metrics=
['mae'])
history = model.fit_generator(my_gen_v2(batch_size, batch_folder, steps), epochs=1, steps_per_epoch=steps,
max_queue_size=1)
so when I use flatten layers - I got this message (some part):
InvalidArgumentError: Matrix size-incompatible: In[0]: [25,91], In[1]: [9,256]
[[node dense_25/MatMul (defined at /home/human/anaconda3/lib/python3.6/site-packages/keras/backend/tensorflow_backend.py:1076) = MatMul[T=DT_FLOAT, _class=["loc:@training_7/Adam/gradients/dense_25/MatMul_grad/MatMul"], transpose_a=false, transpose_b=false, _device="/job:localhost/replica:0/task:0/device:GPU:0"](concatenate_16/concat, dense_25/kernel/read)]]
[[{{node metrics_11/mean_absolute_error/Mean_1/_1219}} = _Recvclient_terminated=false, recv_device="/job:localhost/replica:0/task:0/device:CPU:0", send_device="/job:localhost/replica:0/task:0/device:GPU:0", send_device_incarnation=1, tensor_name="edge_1116_metrics_11/mean_absolute_error/Mean_1", tensor_type=DT_FLOAT, _device="/job:localhost/replica:0/task:0/device:CPU:0"]]
but when I use Reshape layers:
embedding = Reshape(target_shape=(1,), name = feature[0] + '_reshape')(embedding)
I'v got this:
InvalidArgumentError: Input to reshape is a tensor with 600 values, but the requested shape has 25
[[node race_reshape/Reshape (defined at /home/human/anaconda3/lib/python3.6/site-packages/keras/backend/tensorflow_backend.py:1898) = Reshape[T=DT_FLOAT, Tshape=DT_INT32, _device="/job:localhost/replica:0/task:0/device:GPU:0"](race_embed_16/GatherV2, race_reshape/Reshape/shape)]]
[[{{node metrics_12/mean_absolute_error/Mean_1/_1417}} = _Recvclient_terminated=false, recv_device="/job:localhost/replica:0/task:0/device:CPU:0", send_device="/job:localhost/replica:0/task:0/device:GPU:0", send_device_incarnation=1, tensor_name="edge_1098_metrics_12/mean_absolute_error/Mean_1", tensor_type=DT_FLOAT, _device="/job:localhost/replica:0/task:0/device:CPU:0"]]
There are no simillar questions on stackoverflow, only about images shapes. Please help me resolve this, coz I spend a lot of time for this(
tensorflow keras
tensorflow keras
edited Nov 20 '18 at 10:15
PonaFly
asked Nov 20 '18 at 10:08
PonaFlyPonaFly
12
12
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
The problem was resolved by changing input_length in Embedding layer to input shape of feature (feature[1] in my example)
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
StackExchange.using("externalEditor", function () {
StackExchange.using("snippets", function () {
StackExchange.snippets.init();
});
});
}, "code-snippets");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "1"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53390625%2fcouldnt-run-embedding-network-keras-with-multiplue-input%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
The problem was resolved by changing input_length in Embedding layer to input shape of feature (feature[1] in my example)
add a comment |
The problem was resolved by changing input_length in Embedding layer to input shape of feature (feature[1] in my example)
add a comment |
The problem was resolved by changing input_length in Embedding layer to input shape of feature (feature[1] in my example)
The problem was resolved by changing input_length in Embedding layer to input shape of feature (feature[1] in my example)
answered Nov 20 '18 at 13:30
PonaFlyPonaFly
12
12
add a comment |
add a comment |
Thanks for contributing an answer to Stack Overflow!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53390625%2fcouldnt-run-embedding-network-keras-with-multiplue-input%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown