Groupby and cumcount for valid rows only











up vote
0
down vote

favorite












I have a dataframe looks like this:



    ids    valid        date
0 1 False 2012-06-10
1 1 True 2012-07-11
2 1 True 2012-09-20
3 2 False 2012-01-12
4 2 True 2012-07-11
5 3 True 2012-03-09
6 3 True 2012-07-11
7 3 False 2012-12-09
8 4 False 2012-07-11


I want to count how many valid case the person has so far and going through them in ascending date order



ids              valid           date         occur
1 False 2012-06-10 0
1 True 2012-07-11 1
1 True 2012-09-20 2
2 False 2012-01-12 0
2 True 2012-07-11 1
3 True 2012-03-09 1
3 True 2012-07-11 2
3 False 2012-12-09 0
4 False 2012-07-11 0


What I have tried so far:



df = df.sort_values(['id', 'date'])
df['occur'] = df.groupby('valid').cumcount()+1









share|improve this question
























  • "valid" in the input is integer but is boolean in the output? How does that work?
    – coldspeed
    Nov 9 at 22:13










  • @coldspeed I multiply the column by one to translate from true false
    – Matt-pow
    Nov 9 at 22:16










  • That doesn't explain how 1 * 1= False in row #2.
    – coldspeed
    Nov 9 at 22:16










  • Made an edit to correct mistakes
    – Matt-pow
    Nov 9 at 22:18










  • My question is how is it possible for any False values to be present if all of the rows are > 0?
    – coldspeed
    Nov 9 at 22:19















up vote
0
down vote

favorite












I have a dataframe looks like this:



    ids    valid        date
0 1 False 2012-06-10
1 1 True 2012-07-11
2 1 True 2012-09-20
3 2 False 2012-01-12
4 2 True 2012-07-11
5 3 True 2012-03-09
6 3 True 2012-07-11
7 3 False 2012-12-09
8 4 False 2012-07-11


I want to count how many valid case the person has so far and going through them in ascending date order



ids              valid           date         occur
1 False 2012-06-10 0
1 True 2012-07-11 1
1 True 2012-09-20 2
2 False 2012-01-12 0
2 True 2012-07-11 1
3 True 2012-03-09 1
3 True 2012-07-11 2
3 False 2012-12-09 0
4 False 2012-07-11 0


What I have tried so far:



df = df.sort_values(['id', 'date'])
df['occur'] = df.groupby('valid').cumcount()+1









share|improve this question
























  • "valid" in the input is integer but is boolean in the output? How does that work?
    – coldspeed
    Nov 9 at 22:13










  • @coldspeed I multiply the column by one to translate from true false
    – Matt-pow
    Nov 9 at 22:16










  • That doesn't explain how 1 * 1= False in row #2.
    – coldspeed
    Nov 9 at 22:16










  • Made an edit to correct mistakes
    – Matt-pow
    Nov 9 at 22:18










  • My question is how is it possible for any False values to be present if all of the rows are > 0?
    – coldspeed
    Nov 9 at 22:19













up vote
0
down vote

favorite









up vote
0
down vote

favorite











I have a dataframe looks like this:



    ids    valid        date
0 1 False 2012-06-10
1 1 True 2012-07-11
2 1 True 2012-09-20
3 2 False 2012-01-12
4 2 True 2012-07-11
5 3 True 2012-03-09
6 3 True 2012-07-11
7 3 False 2012-12-09
8 4 False 2012-07-11


I want to count how many valid case the person has so far and going through them in ascending date order



ids              valid           date         occur
1 False 2012-06-10 0
1 True 2012-07-11 1
1 True 2012-09-20 2
2 False 2012-01-12 0
2 True 2012-07-11 1
3 True 2012-03-09 1
3 True 2012-07-11 2
3 False 2012-12-09 0
4 False 2012-07-11 0


What I have tried so far:



df = df.sort_values(['id', 'date'])
df['occur'] = df.groupby('valid').cumcount()+1









share|improve this question















I have a dataframe looks like this:



    ids    valid        date
0 1 False 2012-06-10
1 1 True 2012-07-11
2 1 True 2012-09-20
3 2 False 2012-01-12
4 2 True 2012-07-11
5 3 True 2012-03-09
6 3 True 2012-07-11
7 3 False 2012-12-09
8 4 False 2012-07-11


I want to count how many valid case the person has so far and going through them in ascending date order



ids              valid           date         occur
1 False 2012-06-10 0
1 True 2012-07-11 1
1 True 2012-09-20 2
2 False 2012-01-12 0
2 True 2012-07-11 1
3 True 2012-03-09 1
3 True 2012-07-11 2
3 False 2012-12-09 0
4 False 2012-07-11 0


What I have tried so far:



df = df.sort_values(['id', 'date'])
df['occur'] = df.groupby('valid').cumcount()+1






python pandas dataframe group-by pandas-groupby






share|improve this question















share|improve this question













share|improve this question




share|improve this question








edited Nov 9 at 22:59









coldspeed

111k17101170




111k17101170










asked Nov 9 at 22:11









Matt-pow

114214




114214












  • "valid" in the input is integer but is boolean in the output? How does that work?
    – coldspeed
    Nov 9 at 22:13










  • @coldspeed I multiply the column by one to translate from true false
    – Matt-pow
    Nov 9 at 22:16










  • That doesn't explain how 1 * 1= False in row #2.
    – coldspeed
    Nov 9 at 22:16










  • Made an edit to correct mistakes
    – Matt-pow
    Nov 9 at 22:18










  • My question is how is it possible for any False values to be present if all of the rows are > 0?
    – coldspeed
    Nov 9 at 22:19


















  • "valid" in the input is integer but is boolean in the output? How does that work?
    – coldspeed
    Nov 9 at 22:13










  • @coldspeed I multiply the column by one to translate from true false
    – Matt-pow
    Nov 9 at 22:16










  • That doesn't explain how 1 * 1= False in row #2.
    – coldspeed
    Nov 9 at 22:16










  • Made an edit to correct mistakes
    – Matt-pow
    Nov 9 at 22:18










  • My question is how is it possible for any False values to be present if all of the rows are > 0?
    – coldspeed
    Nov 9 at 22:19
















"valid" in the input is integer but is boolean in the output? How does that work?
– coldspeed
Nov 9 at 22:13




"valid" in the input is integer but is boolean in the output? How does that work?
– coldspeed
Nov 9 at 22:13












@coldspeed I multiply the column by one to translate from true false
– Matt-pow
Nov 9 at 22:16




@coldspeed I multiply the column by one to translate from true false
– Matt-pow
Nov 9 at 22:16












That doesn't explain how 1 * 1= False in row #2.
– coldspeed
Nov 9 at 22:16




That doesn't explain how 1 * 1= False in row #2.
– coldspeed
Nov 9 at 22:16












Made an edit to correct mistakes
– Matt-pow
Nov 9 at 22:18




Made an edit to correct mistakes
– Matt-pow
Nov 9 at 22:18












My question is how is it possible for any False values to be present if all of the rows are > 0?
– coldspeed
Nov 9 at 22:19




My question is how is it possible for any False values to be present if all of the rows are > 0?
– coldspeed
Nov 9 at 22:19












1 Answer
1






active

oldest

votes

















up vote
1
down vote



accepted










Use groupby and cumcount:



df['occur'] = (df.groupby(['ids', 'valid'])
.cumcount()
.add(1)
.where(df.valid, 0))
print(df)
ids valid date occur
0 1 False 2012-06-10 0
1 1 True 2012-07-11 1
2 1 True 2012-09-20 2
3 2 False 2012-01-12 0
4 2 True 2012-07-11 1
5 3 True 2012-03-09 1
6 3 True 2012-07-11 2
7 3 False 2012-12-09 0
8 4 False 2012-07-11 0





share|improve this answer





















    Your Answer






    StackExchange.ifUsing("editor", function () {
    StackExchange.using("externalEditor", function () {
    StackExchange.using("snippets", function () {
    StackExchange.snippets.init();
    });
    });
    }, "code-snippets");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "1"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














     

    draft saved


    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53233914%2fgroupby-and-cumcount-for-valid-rows-only%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes








    up vote
    1
    down vote



    accepted










    Use groupby and cumcount:



    df['occur'] = (df.groupby(['ids', 'valid'])
    .cumcount()
    .add(1)
    .where(df.valid, 0))
    print(df)
    ids valid date occur
    0 1 False 2012-06-10 0
    1 1 True 2012-07-11 1
    2 1 True 2012-09-20 2
    3 2 False 2012-01-12 0
    4 2 True 2012-07-11 1
    5 3 True 2012-03-09 1
    6 3 True 2012-07-11 2
    7 3 False 2012-12-09 0
    8 4 False 2012-07-11 0





    share|improve this answer

























      up vote
      1
      down vote



      accepted










      Use groupby and cumcount:



      df['occur'] = (df.groupby(['ids', 'valid'])
      .cumcount()
      .add(1)
      .where(df.valid, 0))
      print(df)
      ids valid date occur
      0 1 False 2012-06-10 0
      1 1 True 2012-07-11 1
      2 1 True 2012-09-20 2
      3 2 False 2012-01-12 0
      4 2 True 2012-07-11 1
      5 3 True 2012-03-09 1
      6 3 True 2012-07-11 2
      7 3 False 2012-12-09 0
      8 4 False 2012-07-11 0





      share|improve this answer























        up vote
        1
        down vote



        accepted







        up vote
        1
        down vote



        accepted






        Use groupby and cumcount:



        df['occur'] = (df.groupby(['ids', 'valid'])
        .cumcount()
        .add(1)
        .where(df.valid, 0))
        print(df)
        ids valid date occur
        0 1 False 2012-06-10 0
        1 1 True 2012-07-11 1
        2 1 True 2012-09-20 2
        3 2 False 2012-01-12 0
        4 2 True 2012-07-11 1
        5 3 True 2012-03-09 1
        6 3 True 2012-07-11 2
        7 3 False 2012-12-09 0
        8 4 False 2012-07-11 0





        share|improve this answer












        Use groupby and cumcount:



        df['occur'] = (df.groupby(['ids', 'valid'])
        .cumcount()
        .add(1)
        .where(df.valid, 0))
        print(df)
        ids valid date occur
        0 1 False 2012-06-10 0
        1 1 True 2012-07-11 1
        2 1 True 2012-09-20 2
        3 2 False 2012-01-12 0
        4 2 True 2012-07-11 1
        5 3 True 2012-03-09 1
        6 3 True 2012-07-11 2
        7 3 False 2012-12-09 0
        8 4 False 2012-07-11 0






        share|improve this answer












        share|improve this answer



        share|improve this answer










        answered Nov 9 at 22:57









        coldspeed

        111k17101170




        111k17101170






























             

            draft saved


            draft discarded



















































             


            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53233914%2fgroupby-and-cumcount-for-valid-rows-only%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Guess what letter conforming each word

            Run scheduled task as local user group (not BUILTIN)

            Port of Spain