Boron trioxide




































































































































































Boron trioxide

Crystal structure of B2O3 [1]

Kristallstruktur Bortrioxid.png
Names
Other names
boron oxide, diboron trioxide, boron sesquioxide, boric oxide, boria

Boric acid anhydride

Identifiers

CAS Number



  • 1303-86-2 ☑Y


3D model (JSmol)


  • Interactive image


ChEBI


  • CHEBI:30163 ☑Y


ChemSpider


  • 452485 ☑Y


ECHA InfoCard

100.013.751

EC Number
215-125-8


PubChem CID


  • 518682


RTECS number
ED7900000




Properties

Chemical formula

B2O3

Molar mass
69.6182 g/mol
Appearance
white, glassy solid

Density
2.460 g/cm3, liquid;

2.55 g/cm3, trigonal;

3.11–3.146 g/cm3, monoclinic



Melting point
450 °C (842 °F; 723 K) (trigonal)
510 °C (tetrahedral)

Boiling point
1,860 °C (3,380 °F; 2,130 K) ,[2] sublimes at 1500 °C[3]

Solubility in water

1.1 g/100mL (10 °C)
3.3 g/100mL (20 °C)
15.7 100 g/100mL (100 °C)

Solubility
partially soluble in methanol

Acidity (pKa)
~ 4


Magnetic susceptibility (χ)

-39.0·10−6 cm3/mol
Thermochemistry


Heat capacity (C)

66.9 J/mol K


Std molar
entropy (So298)

80.8 J/mol K


Std enthalpy of
formation (ΔfHo298)

-1254 kJ/mol


Gibbs free energy (ΔfG˚)

-832 kJ/mol
Hazards
Main hazards
Irritant[4]

Safety data sheet

See: data page


EU classification (DSD) (outdated)

Repr. Cat. 2

NFPA 704



Flammability code 0: Will not burn. E.g., water
Health code 2: Intense or continued but not chronic exposure could cause temporary incapacitation or possible residual injury. E.g., chloroform
Reactivity code 0: Normally stable, even under fire exposure conditions, and is not reactive with water. E.g., liquid nitrogen
Special hazards (white): no code
NFPA 704 four-colored diamond


0


2


0



Flash point
noncombustible
Lethal dose or concentration (LD, LC):


LD50 (median dose)

3163 mg/kg (oral, mouse)[5]
US health exposure limits (NIOSH):


PEL (Permissible)

TWA 15 mg/m3[4]


REL (Recommended)

TWA 10 mg/m3[4]


IDLH (Immediate danger)

2000 mg/m3[4]

Supplementary data page

Structure and
properties


Refractive index (n),
Dielectric constant (εr), etc.

Thermodynamic
data


Phase behaviour
solid–liquid–gas

Spectral data


UV, IR, NMR, MS

Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).


☑Y verify (what is ☑Y‹See TfM›☒N ?)

Infobox references



Boron trioxide (or diboron trioxide) is one of the oxides of boron. It is a white, glassy solid with the formula B2O3. It is almost always found as the vitreous (amorphous) form; however, it can be crystallized after extensive annealing (that is, under prolonged heat).


Glassy boron oxide (g-B2O3) is thought to be composed of boroxol rings which are six-membered rings composed of alternating 3-coordinate boron and 2-coordinate oxygen. Because of the difficulty of building disordered models at the correct density with a large number of boroxol rings, this view was initially controversial, but such models have recently been constructed and exhibit properties in excellent agreement with experiment.[6] It is now recognized, from experimental and theoretical studies,[7][8][9][10][11] that the fraction of boron atoms belonging to boroxol rings in glassy B2O3 is somewhere between 0.73 and 0.83, with 0.75 (​34) corresponding to a 1:1 ratio between ring and non-ring units.


The crystalline form (α-B2O3) (see structure in the infobox[1]) is exclusively composed of BO3 triangles. This trigonal, quartz-like network undergoes a coesite-like transformation to monoclinic β-B2O3 at several gigapascals (9.5 GPa).[12]




Contents






  • 1 Preparation


  • 2 Applications


  • 3 See also


  • 4 References


  • 5 External links





Preparation


Boron trioxide is produced by treating borax with sulfuric acid in a fusion furnace. At temperatures above 750 °C, the molten boron oxide layer separates out from sodium sulfate. It is then decanted, cooled and obtained in 96–97% purity.[3]


Another method is heating boric acid above ~300 °C. Boric acid will initially decompose into steam, (H2O(g)) and metaboric acid (HBO2) at around 170 °C, and further heating above 300 °C will produce more steam and boron trioxide. The reactions are:


H3BO3 → HBO2 + H2O

2 HBO2 → B2O3 + H2O

Boric acid goes to anhydrous microcrystalline B2O3 in a heated fluidized bed.[13] Carefully controlled heating rate avoids gumming as water evolves. Molten boron oxide attacks silicates. Internally graphitized tubes via acetylene thermal decomposition are passivated.[14]


Crystallization of molten α-B2O3 at ambient pressure is strongly kinetically disfavored (compare liquid and crystal densities). Threshold conditions for crystallization of the amorphous solid are 10 kbar and ~200 °C.[15] Its proposed crystal structure in enantiomorphic space groups P31(#144); P32(#145)[16][17] (e.g., γ-glycine) has been revised to enantiomorphic space groups P3121(#152); P3221(#154)[18](e.g., α-quartz).


Boron oxide will also form when diborane (B2H6) reacts with oxygen in the air or trace amounts of moisture:


2B2H6(g) + 3O2(g) → 2B2O3(s) + 6H2(g)

B2H6(g) + 3H2O(g) → B2O3(s) + 6H2(g)[19]


Applications




  • Fluxing agent for glass and enamels

  • Starting material for synthesizing other boron compounds such as boron carbide

  • An additive used in glass fibres (optical fibres)

  • It is used in the production of borosilicate glass

  • The inert capping layer in the Liquid Encapsulation Czochralski process for the production of gallium arsenide single crystal

  • As an acid catalyst in organic synthesis



See also



  • boron suboxide

  • boric acid

  • sassolite

  • Tris(2,2,2-trifluoroethyl) borate



References





  1. ^ ab Gurr, G. E.; Montgomery, P. W.; Knutson, C. D.; Gorres, B. T. (1970). "The Crystal Structure of Trigonal Diboron Trioxide". Acta Crystallographica B. 26 (7): 906–915. doi:10.1107/S0567740870003369..mw-parser-output cite.citation{font-style:inherit}.mw-parser-output q{quotes:"""""""'""'"}.mw-parser-output code.cs1-code{color:inherit;background:inherit;border:inherit;padding:inherit}.mw-parser-output .cs1-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/6/65/Lock-green.svg/9px-Lock-green.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .cs1-lock-limited a,.mw-parser-output .cs1-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/d/d6/Lock-gray-alt-2.svg/9px-Lock-gray-alt-2.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .cs1-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/a/aa/Lock-red-alt-2.svg/9px-Lock-red-alt-2.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration{color:#555}.mw-parser-output .cs1-subscription span,.mw-parser-output .cs1-registration span{border-bottom:1px dotted;cursor:help}.mw-parser-output .cs1-hidden-error{display:none;font-size:100%}.mw-parser-output .cs1-visible-error{font-size:100%}.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration,.mw-parser-output .cs1-format{font-size:95%}.mw-parser-output .cs1-kern-left,.mw-parser-output .cs1-kern-wl-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right,.mw-parser-output .cs1-kern-wl-right{padding-right:0.2em}


  2. ^ High temperature corrosion and materials chemistry: proceedings of the Per Kofstad Memorial Symposium. Proceedings of the Electrochemical Society. The Electrochemical Society. 2000. p. 496. ISBN 1-56677-261-3.


  3. ^ ab Patnaik, P. (2003). Handbook of Inorganic Chemical Compounds. McGraw-Hill. p. 119. ISBN 0-07-049439-8. Retrieved 2009-06-06.


  4. ^ abcd "NIOSH Pocket Guide to Chemical Hazards #0060". National Institute for Occupational Safety and Health (NIOSH).


  5. ^ "Boron oxide". Immediately Dangerous to Life and Health Concentrations (IDLH). National Institute for Occupational Safety and Health (NIOSH).


  6. ^ Ferlat, G.; Charpentier, T.; Seitsonen, A. P.; Takada, A.; Lazzeri, M.; Cormier, L.; Calas, G.; Mauri. F. (2008). "Boroxol Rings in Liquid and Vitreous B2O3 from First Principles". Phys. Rev. Lett. 101: 065504. Bibcode:2008PhRvL.101f5504F. doi:10.1103/PhysRevLett.101.065504.; Ferlat, G.; Seitsonen, A. P.; Lazzeri, M.; Mauri, F. (2012). "Hidden polymorphs drive vitrification in B2O3". Nature Materials Letters. arXiv:1209.3482. Bibcode:2012NatMa..11..925F. doi:10.1038/NMAT3416.


  7. ^ Hung, I.; et al. (2009). "Determination of the bond-angle distribution in vitreous B2O3 by rotation (DOR) NMR spectroscopy". Journal of Solid State Chemistry. 182: 2402–2408. Bibcode:2009JSSCh.182.2402H. doi:10.1016/j.jssc.2009.06.025.


  8. ^ Soper, A. K. (2011). "Boroxol rings from diffraction data on vitreous boron trioxide". J. Phys.: Condens. Matter. 23: 365402. Bibcode:2011JPCM...23.5402S. doi:10.1088/0953-8984/23/36/365402.


  9. ^ Joo, C.; et al. (2000). "The ring structure of boron trioxide glass". Journal of Non-Crystalline Solids. 261: 282–286. Bibcode:2000JNCS..261..282J. doi:10.1016/s0022-3093(99)00609-2.


  10. ^ Zwanziger, J. W. (2005). "The NMR response of boroxol rings: a density functional theory study". Solid State Nuclear Magnetic Resonance. 27: 5–9. doi:10.1016/j.ssnmr.2004.08.004.


  11. ^ Micoulaut, M. (1997). "The structure of vitreous B2O3 obtained from a thermostatistical model of agglomeration". Journal of Molecular Liquids. 71: 107–114. doi:10.1016/s0167-7322(97)00003-2.


  12. ^ Brazhkin, V. V.; Katayama, Y.; Inamura, Y.; Kondrin, M. V.; Lyapin, A. G.; Popova, S. V.; Voloshin, R. N. (2003). "Structural transformations in liquid, crystalline and glassy B2O3 under high pressure". JETP Letters. 78 (6): 393–397. Bibcode:2003JETPL..78..393B. doi:10.1134/1.1630134.


  13. ^ Kocakuşak, S.; Akçay, K.; Ayok, T.; Koöroğlu, H. J.; Koral, M.; Savaşçi, Ö. T.; Tolun, R. (1996). "Production of anhydrous, crystalline boron oxide in fluidized bed reactor". Chemical Engineering and Processing. 35 (4): 311–317. doi:10.1016/0255-2701(95)04142-7.


  14. ^ Morelock, C. R. (1961). "Research Laboratory Report #61-RL-2672M". General Electric.


  15. ^ Aziz, M. J.; Nygren, E.; Hays, J. F.; Turnbull, D. (1985). "Crystal Growth Kinetics of Boron Oxide Under Pressure". Journal of Applied Physics. 57 (6): 2233. Bibcode:1985JAP....57.2233A. doi:10.1063/1.334368.


  16. ^ Gurr, G. E.; Montgomery, P. W.; Knutson, C. D.; Gorres, B. T. (1970). "The crystal structure of trigonal diboron trioxide". Acta Crystallographica B. 26 (7): 906–915. doi:10.1107/S0567740870003369.


  17. ^ Strong, S. L.; Wells, A. F.; Kaplow, R. (1971). "On the crystal structure of B2O3". Acta Crystallographica B. 27 (8): 1662–1663. doi:10.1107/S0567740871004515.


  18. ^ Effenberger, H.; Lengauer, C. L.; Parthé, E. (2001). "Trigonal B2O3 with Higher Space-Group Symmetry: Results of a Reevaluation". Monatshefte für Chemie. 132 (12): 1515–1517. doi:10.1007/s007060170008.


  19. ^ AirProducts (2011). "Diborane Storage & Delivery" (PDF).




External links



  • National Pollutant Inventory: Boron and compounds

  • Australian Government information


  • US NIH hazard information. See NIH.

  • Material Safety Data Sheet

  • CDC - NIOSH Pocket Guide to Chemical Hazards - Boron oxide












Popular posts from this blog

鏡平學校

ꓛꓣだゔៀៅຸ໢ທຮ໕໒ ,ໂ'໥໓າ໼ឨឲ៵៭ៈゎゔit''䖳𥁄卿' ☨₤₨こゎもょの;ꜹꟚꞖꞵꟅꞛေၦေɯ,ɨɡ𛃵𛁹ޝ޳ޠ޾,ޤޒޯ޾𫝒𫠁သ𛅤チョ'サノބޘދ𛁐ᶿᶇᶀᶋᶠ㨑㽹⻮ꧬ꧹؍۩وَؠ㇕㇃㇪ ㇦㇋㇋ṜẰᵡᴠ 軌ᵕ搜۳ٰޗޮ޷ސޯ𫖾𫅀ल, ꙭ꙰ꚅꙁꚊꞻꝔ꟠Ꝭㄤﺟޱސꧨꧼ꧴ꧯꧽ꧲ꧯ'⽹⽭⾁⿞⼳⽋២៩ញណើꩯꩤ꩸ꩮᶻᶺᶧᶂ𫳲𫪭𬸄𫵰𬖩𬫣𬊉ၲ𛅬㕦䬺𫝌𫝼,,𫟖𫞽ហៅ஫㆔ాఆఅꙒꚞꙍ,Ꙟ꙱エ ,ポテ,フࢰࢯ𫟠𫞶 𫝤𫟠ﺕﹱﻜﻣ𪵕𪭸𪻆𪾩𫔷ġ,ŧآꞪ꟥,ꞔꝻ♚☹⛵𛀌ꬷꭞȄƁƪƬșƦǙǗdžƝǯǧⱦⱰꓕꓢႋ神 ဴ၀க௭எ௫ឫោ ' េㇷㇴㇼ神ㇸㇲㇽㇴㇼㇻㇸ'ㇸㇿㇸㇹㇰㆣꓚꓤ₡₧ ㄨㄟ㄂ㄖㄎ໗ツڒذ₶।ऩछएोञयूटक़कयँृी,冬'𛅢𛅥ㇱㇵㇶ𥄥𦒽𠣧𠊓𧢖𥞘𩔋цѰㄠſtʯʭɿʆʗʍʩɷɛ,əʏダヵㄐㄘR{gỚṖḺờṠṫảḙḭᴮᵏᴘᵀᵷᵕᴜᴏᵾq﮲ﲿﴽﭙ軌ﰬﶚﶧ﫲Ҝжюїкӈㇴffצּ﬘﭅﬈軌'ffistfflſtffतभफɳɰʊɲʎ𛁱𛁖𛁮𛀉 𛂯𛀞నఋŀŲ 𫟲𫠖𫞺ຆຆ ໹້໕໗ๆทԊꧢꧠ꧰ꓱ⿝⼑ŎḬẃẖỐẅ ,ờỰỈỗﮊDžȩꭏꭎꬻ꭮ꬿꭖꭥꭅ㇭神 ⾈ꓵꓑ⺄㄄ㄪㄙㄅㄇstA۵䞽ॶ𫞑𫝄㇉㇇゜軌𩜛𩳠Jﻺ‚Üမ႕ႌႊၐၸဓၞၞၡ៸wyvtᶎᶪᶹစဎ꣡꣰꣢꣤ٗ؋لㇳㇾㇻㇱ㆐㆔,,㆟Ⱶヤマފ޼ޝަݿݞݠݷݐ',ݘ,ݪݙݵ𬝉𬜁𫝨𫞘くせぉて¼óû×ó£…𛅑הㄙくԗԀ5606神45,神796'𪤻𫞧ꓐ㄁ㄘɥɺꓵꓲ3''7034׉ⱦⱠˆ“𫝋ȍ,ꩲ軌꩷ꩶꩧꩫఞ۔فڱێظペサ神ナᴦᵑ47 9238їﻂ䐊䔉㠸﬎ffiﬣ,לּᴷᴦᵛᵽ,ᴨᵤ ᵸᵥᴗᵈꚏꚉꚟ⻆rtǟƴ𬎎

Why https connections are so slow when debugging (stepping over) in Java?