ValueError: Input 0 is incompatible with layer conv2d_1: expected ndim=4, found ndim=3











up vote
1
down vote

favorite
1












After inquiring into the questions already asked about this problem, I keep presenting it. Im trying to classify letters from A to D. All input images are 64x64 and graycolor.



The first layer of my CNN is:



model = Sequential()
model.add(Conv2D(32, (3, 3), input_shape = input_shape, activation = 'relu'))


And input_shape it's coming from:



# Define the number of classes
num_classes = 4
labels_name={'A':0,'B':1,'C':2,'D':3}

img_data_list=
labels_list=

for dataset in data_dir_list:
img_list=os.listdir(data_path+'/'+ dataset)
print ('Loading the images of dataset-'+'{}n'.format(dataset))
label = labels_name[dataset]
for img in img_list:
input_img=cv2.imread(data_path + '/'+ dataset + '/'+ img )
input_img=cv2.cvtColor(input_img, cv2.COLOR_BGR2GRAY)
input_img_resize=cv2.resize(input_img,(128,128))
img_data_list.append(input_img_resize)
labels_list.append(label)

img_data = np.array(img_data_list)
img_data = img_data.astype('float32')
img_data /= 255
print (img_data.shape)

labels = np.array(labels_list)
print(np.unique(labels,return_counts=True))

#convert class labels to on-hot encoding
Y = np_utils.to_categorical(labels, num_classes)

#Shuffle the dataset
x,y = shuffle(img_data,Y, random_state=2)

# Split the dataset
X_train, X_test, y_train, y_test = train_test_split(x, y, test_size=0.2, random_state=2)

#Defining the model
input_shape=img_data[0].shape
print(input_shape)


Thanks,










share|improve this question






















  • What is the value of input_shape?
    – today
    Nov 11 at 18:58










  • input_shape=img_data[0].shape and img_data is coming from input_shape=img_data[0].shape
    – J. Dav
    Nov 11 at 20:40















up vote
1
down vote

favorite
1












After inquiring into the questions already asked about this problem, I keep presenting it. Im trying to classify letters from A to D. All input images are 64x64 and graycolor.



The first layer of my CNN is:



model = Sequential()
model.add(Conv2D(32, (3, 3), input_shape = input_shape, activation = 'relu'))


And input_shape it's coming from:



# Define the number of classes
num_classes = 4
labels_name={'A':0,'B':1,'C':2,'D':3}

img_data_list=
labels_list=

for dataset in data_dir_list:
img_list=os.listdir(data_path+'/'+ dataset)
print ('Loading the images of dataset-'+'{}n'.format(dataset))
label = labels_name[dataset]
for img in img_list:
input_img=cv2.imread(data_path + '/'+ dataset + '/'+ img )
input_img=cv2.cvtColor(input_img, cv2.COLOR_BGR2GRAY)
input_img_resize=cv2.resize(input_img,(128,128))
img_data_list.append(input_img_resize)
labels_list.append(label)

img_data = np.array(img_data_list)
img_data = img_data.astype('float32')
img_data /= 255
print (img_data.shape)

labels = np.array(labels_list)
print(np.unique(labels,return_counts=True))

#convert class labels to on-hot encoding
Y = np_utils.to_categorical(labels, num_classes)

#Shuffle the dataset
x,y = shuffle(img_data,Y, random_state=2)

# Split the dataset
X_train, X_test, y_train, y_test = train_test_split(x, y, test_size=0.2, random_state=2)

#Defining the model
input_shape=img_data[0].shape
print(input_shape)


Thanks,










share|improve this question






















  • What is the value of input_shape?
    – today
    Nov 11 at 18:58










  • input_shape=img_data[0].shape and img_data is coming from input_shape=img_data[0].shape
    – J. Dav
    Nov 11 at 20:40













up vote
1
down vote

favorite
1









up vote
1
down vote

favorite
1






1





After inquiring into the questions already asked about this problem, I keep presenting it. Im trying to classify letters from A to D. All input images are 64x64 and graycolor.



The first layer of my CNN is:



model = Sequential()
model.add(Conv2D(32, (3, 3), input_shape = input_shape, activation = 'relu'))


And input_shape it's coming from:



# Define the number of classes
num_classes = 4
labels_name={'A':0,'B':1,'C':2,'D':3}

img_data_list=
labels_list=

for dataset in data_dir_list:
img_list=os.listdir(data_path+'/'+ dataset)
print ('Loading the images of dataset-'+'{}n'.format(dataset))
label = labels_name[dataset]
for img in img_list:
input_img=cv2.imread(data_path + '/'+ dataset + '/'+ img )
input_img=cv2.cvtColor(input_img, cv2.COLOR_BGR2GRAY)
input_img_resize=cv2.resize(input_img,(128,128))
img_data_list.append(input_img_resize)
labels_list.append(label)

img_data = np.array(img_data_list)
img_data = img_data.astype('float32')
img_data /= 255
print (img_data.shape)

labels = np.array(labels_list)
print(np.unique(labels,return_counts=True))

#convert class labels to on-hot encoding
Y = np_utils.to_categorical(labels, num_classes)

#Shuffle the dataset
x,y = shuffle(img_data,Y, random_state=2)

# Split the dataset
X_train, X_test, y_train, y_test = train_test_split(x, y, test_size=0.2, random_state=2)

#Defining the model
input_shape=img_data[0].shape
print(input_shape)


Thanks,










share|improve this question













After inquiring into the questions already asked about this problem, I keep presenting it. Im trying to classify letters from A to D. All input images are 64x64 and graycolor.



The first layer of my CNN is:



model = Sequential()
model.add(Conv2D(32, (3, 3), input_shape = input_shape, activation = 'relu'))


And input_shape it's coming from:



# Define the number of classes
num_classes = 4
labels_name={'A':0,'B':1,'C':2,'D':3}

img_data_list=
labels_list=

for dataset in data_dir_list:
img_list=os.listdir(data_path+'/'+ dataset)
print ('Loading the images of dataset-'+'{}n'.format(dataset))
label = labels_name[dataset]
for img in img_list:
input_img=cv2.imread(data_path + '/'+ dataset + '/'+ img )
input_img=cv2.cvtColor(input_img, cv2.COLOR_BGR2GRAY)
input_img_resize=cv2.resize(input_img,(128,128))
img_data_list.append(input_img_resize)
labels_list.append(label)

img_data = np.array(img_data_list)
img_data = img_data.astype('float32')
img_data /= 255
print (img_data.shape)

labels = np.array(labels_list)
print(np.unique(labels,return_counts=True))

#convert class labels to on-hot encoding
Y = np_utils.to_categorical(labels, num_classes)

#Shuffle the dataset
x,y = shuffle(img_data,Y, random_state=2)

# Split the dataset
X_train, X_test, y_train, y_test = train_test_split(x, y, test_size=0.2, random_state=2)

#Defining the model
input_shape=img_data[0].shape
print(input_shape)


Thanks,







python tensorflow keras conv-neural-network






share|improve this question













share|improve this question











share|improve this question




share|improve this question










asked Nov 11 at 13:48









J. Dav

113




113












  • What is the value of input_shape?
    – today
    Nov 11 at 18:58










  • input_shape=img_data[0].shape and img_data is coming from input_shape=img_data[0].shape
    – J. Dav
    Nov 11 at 20:40


















  • What is the value of input_shape?
    – today
    Nov 11 at 18:58










  • input_shape=img_data[0].shape and img_data is coming from input_shape=img_data[0].shape
    – J. Dav
    Nov 11 at 20:40
















What is the value of input_shape?
– today
Nov 11 at 18:58




What is the value of input_shape?
– today
Nov 11 at 18:58












input_shape=img_data[0].shape and img_data is coming from input_shape=img_data[0].shape
– J. Dav
Nov 11 at 20:40




input_shape=img_data[0].shape and img_data is coming from input_shape=img_data[0].shape
– J. Dav
Nov 11 at 20:40












1 Answer
1






active

oldest

votes

















up vote
0
down vote













Conv2d expects input of shape (batchsize, w, h, filters).



You need to add a reshape to fit the data before the conv layer:



 model.add(Reshape((64, 64, 1)))


This will set your model dimensions to [None, 64,64,1] and should be fine for Conv2d.






share|improve this answer





















    Your Answer






    StackExchange.ifUsing("editor", function () {
    StackExchange.using("externalEditor", function () {
    StackExchange.using("snippets", function () {
    StackExchange.snippets.init();
    });
    });
    }, "code-snippets");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "1"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53249386%2fvalueerror-input-0-is-incompatible-with-layer-conv2d-1-expected-ndim-4-found%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes








    up vote
    0
    down vote













    Conv2d expects input of shape (batchsize, w, h, filters).



    You need to add a reshape to fit the data before the conv layer:



     model.add(Reshape((64, 64, 1)))


    This will set your model dimensions to [None, 64,64,1] and should be fine for Conv2d.






    share|improve this answer

























      up vote
      0
      down vote













      Conv2d expects input of shape (batchsize, w, h, filters).



      You need to add a reshape to fit the data before the conv layer:



       model.add(Reshape((64, 64, 1)))


      This will set your model dimensions to [None, 64,64,1] and should be fine for Conv2d.






      share|improve this answer























        up vote
        0
        down vote










        up vote
        0
        down vote









        Conv2d expects input of shape (batchsize, w, h, filters).



        You need to add a reshape to fit the data before the conv layer:



         model.add(Reshape((64, 64, 1)))


        This will set your model dimensions to [None, 64,64,1] and should be fine for Conv2d.






        share|improve this answer












        Conv2d expects input of shape (batchsize, w, h, filters).



        You need to add a reshape to fit the data before the conv layer:



         model.add(Reshape((64, 64, 1)))


        This will set your model dimensions to [None, 64,64,1] and should be fine for Conv2d.







        share|improve this answer












        share|improve this answer



        share|improve this answer










        answered Nov 11 at 20:14









        Dinari

        1,247322




        1,247322






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Stack Overflow!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            To learn more, see our tips on writing great answers.





            Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


            Please pay close attention to the following guidance:


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53249386%2fvalueerror-input-0-is-incompatible-with-layer-conv2d-1-expected-ndim-4-found%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Guess what letter conforming each word

            Run scheduled task as local user group (not BUILTIN)

            Port of Spain