Convert name value pairs into new pandas data columns
How do you convert a column in a Python Pandas DataFrame that has one column with name value pairs into additional columns within the same dataframe.
The column (attrs) with the named value pairs has values like :
[{'attr_id': 7, 'val': '4.00'}, {'attr_id': 8, 'val': '2.50'}, {'attr_id': 9, 'val': '1750'}, {'attr_id': 11, 'val': 'false'}, {'attr_id': 10, 'val': 'false'}]
[{'attr_id': 7, 'val': '2.00'}, {'attr_id': 8, 'val': '1.00'}, {'attr_id': 11, 'val': 'false'}, {'attr_id': 10, 'val': 'false'}]
[{'attr_id': 11, 'val': 'false'}, {'attr_id': 10, 'val': 'false'}]
So for the first record, the new columns I am trying to create would be attr_id7, attr_id8, attr_id9, attr_id10, attr_id11 and have values 4.00,2.50,1750,false,false
Considering converting column content into proper Python dictionary and then using something like the answer Splitting dictionary/list inside a Pandas Column into Separate Columns
python json pandas
add a comment |
How do you convert a column in a Python Pandas DataFrame that has one column with name value pairs into additional columns within the same dataframe.
The column (attrs) with the named value pairs has values like :
[{'attr_id': 7, 'val': '4.00'}, {'attr_id': 8, 'val': '2.50'}, {'attr_id': 9, 'val': '1750'}, {'attr_id': 11, 'val': 'false'}, {'attr_id': 10, 'val': 'false'}]
[{'attr_id': 7, 'val': '2.00'}, {'attr_id': 8, 'val': '1.00'}, {'attr_id': 11, 'val': 'false'}, {'attr_id': 10, 'val': 'false'}]
[{'attr_id': 11, 'val': 'false'}, {'attr_id': 10, 'val': 'false'}]
So for the first record, the new columns I am trying to create would be attr_id7, attr_id8, attr_id9, attr_id10, attr_id11 and have values 4.00,2.50,1750,false,false
Considering converting column content into proper Python dictionary and then using something like the answer Splitting dictionary/list inside a Pandas Column into Separate Columns
python json pandas
If these are row-specific, it might be better to unpack theattr_id
into a column andval
into a column, though I'm not sure ifval
would have a namespace collision withinpandas
or not, so you may want to proceed with caution on that particular column name
– C.Nivs
Nov 19 '18 at 4:07
add a comment |
How do you convert a column in a Python Pandas DataFrame that has one column with name value pairs into additional columns within the same dataframe.
The column (attrs) with the named value pairs has values like :
[{'attr_id': 7, 'val': '4.00'}, {'attr_id': 8, 'val': '2.50'}, {'attr_id': 9, 'val': '1750'}, {'attr_id': 11, 'val': 'false'}, {'attr_id': 10, 'val': 'false'}]
[{'attr_id': 7, 'val': '2.00'}, {'attr_id': 8, 'val': '1.00'}, {'attr_id': 11, 'val': 'false'}, {'attr_id': 10, 'val': 'false'}]
[{'attr_id': 11, 'val': 'false'}, {'attr_id': 10, 'val': 'false'}]
So for the first record, the new columns I am trying to create would be attr_id7, attr_id8, attr_id9, attr_id10, attr_id11 and have values 4.00,2.50,1750,false,false
Considering converting column content into proper Python dictionary and then using something like the answer Splitting dictionary/list inside a Pandas Column into Separate Columns
python json pandas
How do you convert a column in a Python Pandas DataFrame that has one column with name value pairs into additional columns within the same dataframe.
The column (attrs) with the named value pairs has values like :
[{'attr_id': 7, 'val': '4.00'}, {'attr_id': 8, 'val': '2.50'}, {'attr_id': 9, 'val': '1750'}, {'attr_id': 11, 'val': 'false'}, {'attr_id': 10, 'val': 'false'}]
[{'attr_id': 7, 'val': '2.00'}, {'attr_id': 8, 'val': '1.00'}, {'attr_id': 11, 'val': 'false'}, {'attr_id': 10, 'val': 'false'}]
[{'attr_id': 11, 'val': 'false'}, {'attr_id': 10, 'val': 'false'}]
So for the first record, the new columns I am trying to create would be attr_id7, attr_id8, attr_id9, attr_id10, attr_id11 and have values 4.00,2.50,1750,false,false
Considering converting column content into proper Python dictionary and then using something like the answer Splitting dictionary/list inside a Pandas Column into Separate Columns
[{'attr_id': 7, 'val': '4.00'}, {'attr_id': 8, 'val': '2.50'}, {'attr_id': 9, 'val': '1750'}, {'attr_id': 11, 'val': 'false'}, {'attr_id': 10, 'val': 'false'}]
[{'attr_id': 7, 'val': '2.00'}, {'attr_id': 8, 'val': '1.00'}, {'attr_id': 11, 'val': 'false'}, {'attr_id': 10, 'val': 'false'}]
[{'attr_id': 11, 'val': 'false'}, {'attr_id': 10, 'val': 'false'}]
[{'attr_id': 7, 'val': '4.00'}, {'attr_id': 8, 'val': '2.50'}, {'attr_id': 9, 'val': '1750'}, {'attr_id': 11, 'val': 'false'}, {'attr_id': 10, 'val': 'false'}]
[{'attr_id': 7, 'val': '2.00'}, {'attr_id': 8, 'val': '1.00'}, {'attr_id': 11, 'val': 'false'}, {'attr_id': 10, 'val': 'false'}]
[{'attr_id': 11, 'val': 'false'}, {'attr_id': 10, 'val': 'false'}]
python json pandas
python json pandas
edited Nov 19 '18 at 5:10
user468648
asked Nov 19 '18 at 3:57
user468648user468648
152312
152312
If these are row-specific, it might be better to unpack theattr_id
into a column andval
into a column, though I'm not sure ifval
would have a namespace collision withinpandas
or not, so you may want to proceed with caution on that particular column name
– C.Nivs
Nov 19 '18 at 4:07
add a comment |
If these are row-specific, it might be better to unpack theattr_id
into a column andval
into a column, though I'm not sure ifval
would have a namespace collision withinpandas
or not, so you may want to proceed with caution on that particular column name
– C.Nivs
Nov 19 '18 at 4:07
If these are row-specific, it might be better to unpack the
attr_id
into a column and val
into a column, though I'm not sure if val
would have a namespace collision within pandas
or not, so you may want to proceed with caution on that particular column name– C.Nivs
Nov 19 '18 at 4:07
If these are row-specific, it might be better to unpack the
attr_id
into a column and val
into a column, though I'm not sure if val
would have a namespace collision within pandas
or not, so you may want to proceed with caution on that particular column name– C.Nivs
Nov 19 '18 at 4:07
add a comment |
1 Answer
1
active
oldest
votes
Maybe something like the below:
import pandas as pd
import numpy as np
l=[[{'attr_id': 7, 'val': '4.00'}, {'attr_id': 8, 'val': '2.50'}, {'attr_id': 9, 'val': '1750'}, {'attr_id': 11, 'val': 'false'}, {'attr_id': 10, 'val': 'false'}],
[{'attr_id': 7, 'val': '2.00'}, {'attr_id': 8, 'val': '1.00'}, {'attr_id': 11, 'val': 'false'}, {'attr_id': 10, 'val': 'false'}],
[{'attr_id': 11, 'val': 'false'}, {'attr_id': 10, 'val': 'false'}],]
d =
for i in l:
q={}
for x in i:
q['attr_id{}'.format(x['attr_id'])]=x['val']
d.append(q)
df = pd.DataFrame(d)
print(df)
.
attr_id10 attr_id11 attr_id7 attr_id8 attr_id9
0 false false 4.00 2.50 1750
1 false false 2.00 1.00 NaN
2 false false NaN NaN NaN
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
StackExchange.using("externalEditor", function () {
StackExchange.using("snippets", function () {
StackExchange.snippets.init();
});
});
}, "code-snippets");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "1"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53368124%2fconvert-name-value-pairs-into-new-pandas-data-columns%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
Maybe something like the below:
import pandas as pd
import numpy as np
l=[[{'attr_id': 7, 'val': '4.00'}, {'attr_id': 8, 'val': '2.50'}, {'attr_id': 9, 'val': '1750'}, {'attr_id': 11, 'val': 'false'}, {'attr_id': 10, 'val': 'false'}],
[{'attr_id': 7, 'val': '2.00'}, {'attr_id': 8, 'val': '1.00'}, {'attr_id': 11, 'val': 'false'}, {'attr_id': 10, 'val': 'false'}],
[{'attr_id': 11, 'val': 'false'}, {'attr_id': 10, 'val': 'false'}],]
d =
for i in l:
q={}
for x in i:
q['attr_id{}'.format(x['attr_id'])]=x['val']
d.append(q)
df = pd.DataFrame(d)
print(df)
.
attr_id10 attr_id11 attr_id7 attr_id8 attr_id9
0 false false 4.00 2.50 1750
1 false false 2.00 1.00 NaN
2 false false NaN NaN NaN
add a comment |
Maybe something like the below:
import pandas as pd
import numpy as np
l=[[{'attr_id': 7, 'val': '4.00'}, {'attr_id': 8, 'val': '2.50'}, {'attr_id': 9, 'val': '1750'}, {'attr_id': 11, 'val': 'false'}, {'attr_id': 10, 'val': 'false'}],
[{'attr_id': 7, 'val': '2.00'}, {'attr_id': 8, 'val': '1.00'}, {'attr_id': 11, 'val': 'false'}, {'attr_id': 10, 'val': 'false'}],
[{'attr_id': 11, 'val': 'false'}, {'attr_id': 10, 'val': 'false'}],]
d =
for i in l:
q={}
for x in i:
q['attr_id{}'.format(x['attr_id'])]=x['val']
d.append(q)
df = pd.DataFrame(d)
print(df)
.
attr_id10 attr_id11 attr_id7 attr_id8 attr_id9
0 false false 4.00 2.50 1750
1 false false 2.00 1.00 NaN
2 false false NaN NaN NaN
add a comment |
Maybe something like the below:
import pandas as pd
import numpy as np
l=[[{'attr_id': 7, 'val': '4.00'}, {'attr_id': 8, 'val': '2.50'}, {'attr_id': 9, 'val': '1750'}, {'attr_id': 11, 'val': 'false'}, {'attr_id': 10, 'val': 'false'}],
[{'attr_id': 7, 'val': '2.00'}, {'attr_id': 8, 'val': '1.00'}, {'attr_id': 11, 'val': 'false'}, {'attr_id': 10, 'val': 'false'}],
[{'attr_id': 11, 'val': 'false'}, {'attr_id': 10, 'val': 'false'}],]
d =
for i in l:
q={}
for x in i:
q['attr_id{}'.format(x['attr_id'])]=x['val']
d.append(q)
df = pd.DataFrame(d)
print(df)
.
attr_id10 attr_id11 attr_id7 attr_id8 attr_id9
0 false false 4.00 2.50 1750
1 false false 2.00 1.00 NaN
2 false false NaN NaN NaN
Maybe something like the below:
import pandas as pd
import numpy as np
l=[[{'attr_id': 7, 'val': '4.00'}, {'attr_id': 8, 'val': '2.50'}, {'attr_id': 9, 'val': '1750'}, {'attr_id': 11, 'val': 'false'}, {'attr_id': 10, 'val': 'false'}],
[{'attr_id': 7, 'val': '2.00'}, {'attr_id': 8, 'val': '1.00'}, {'attr_id': 11, 'val': 'false'}, {'attr_id': 10, 'val': 'false'}],
[{'attr_id': 11, 'val': 'false'}, {'attr_id': 10, 'val': 'false'}],]
d =
for i in l:
q={}
for x in i:
q['attr_id{}'.format(x['attr_id'])]=x['val']
d.append(q)
df = pd.DataFrame(d)
print(df)
.
attr_id10 attr_id11 attr_id7 attr_id8 attr_id9
0 false false 4.00 2.50 1750
1 false false 2.00 1.00 NaN
2 false false NaN NaN NaN
answered Nov 19 '18 at 4:20
tengteng
817721
817721
add a comment |
add a comment |
Thanks for contributing an answer to Stack Overflow!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53368124%2fconvert-name-value-pairs-into-new-pandas-data-columns%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
If these are row-specific, it might be better to unpack the
attr_id
into a column andval
into a column, though I'm not sure ifval
would have a namespace collision withinpandas
or not, so you may want to proceed with caution on that particular column name– C.Nivs
Nov 19 '18 at 4:07