Convert name value pairs into new pandas data columns












-2















How do you convert a column in a Python Pandas DataFrame that has one column with name value pairs into additional columns within the same dataframe.



The column (attrs) with the named value pairs has values like :






[{'attr_id': 7, 'val': '4.00'}, {'attr_id': 8, 'val': '2.50'}, {'attr_id': 9, 'val': '1750'}, {'attr_id': 11, 'val': 'false'}, {'attr_id': 10, 'val': 'false'}]
[{'attr_id': 7, 'val': '2.00'}, {'attr_id': 8, 'val': '1.00'}, {'attr_id': 11, 'val': 'false'}, {'attr_id': 10, 'val': 'false'}]
[{'attr_id': 11, 'val': 'false'}, {'attr_id': 10, 'val': 'false'}]





So for the first record, the new columns I am trying to create would be attr_id7, attr_id8, attr_id9, attr_id10, attr_id11 and have values 4.00,2.50,1750,false,false



Considering converting column content into proper Python dictionary and then using something like the answer Splitting dictionary/list inside a Pandas Column into Separate Columns










share|improve this question

























  • If these are row-specific, it might be better to unpack the attr_id into a column and val into a column, though I'm not sure if val would have a namespace collision within pandas or not, so you may want to proceed with caution on that particular column name

    – C.Nivs
    Nov 19 '18 at 4:07
















-2















How do you convert a column in a Python Pandas DataFrame that has one column with name value pairs into additional columns within the same dataframe.



The column (attrs) with the named value pairs has values like :






[{'attr_id': 7, 'val': '4.00'}, {'attr_id': 8, 'val': '2.50'}, {'attr_id': 9, 'val': '1750'}, {'attr_id': 11, 'val': 'false'}, {'attr_id': 10, 'val': 'false'}]
[{'attr_id': 7, 'val': '2.00'}, {'attr_id': 8, 'val': '1.00'}, {'attr_id': 11, 'val': 'false'}, {'attr_id': 10, 'val': 'false'}]
[{'attr_id': 11, 'val': 'false'}, {'attr_id': 10, 'val': 'false'}]





So for the first record, the new columns I am trying to create would be attr_id7, attr_id8, attr_id9, attr_id10, attr_id11 and have values 4.00,2.50,1750,false,false



Considering converting column content into proper Python dictionary and then using something like the answer Splitting dictionary/list inside a Pandas Column into Separate Columns










share|improve this question

























  • If these are row-specific, it might be better to unpack the attr_id into a column and val into a column, though I'm not sure if val would have a namespace collision within pandas or not, so you may want to proceed with caution on that particular column name

    – C.Nivs
    Nov 19 '18 at 4:07














-2












-2








-2








How do you convert a column in a Python Pandas DataFrame that has one column with name value pairs into additional columns within the same dataframe.



The column (attrs) with the named value pairs has values like :






[{'attr_id': 7, 'val': '4.00'}, {'attr_id': 8, 'val': '2.50'}, {'attr_id': 9, 'val': '1750'}, {'attr_id': 11, 'val': 'false'}, {'attr_id': 10, 'val': 'false'}]
[{'attr_id': 7, 'val': '2.00'}, {'attr_id': 8, 'val': '1.00'}, {'attr_id': 11, 'val': 'false'}, {'attr_id': 10, 'val': 'false'}]
[{'attr_id': 11, 'val': 'false'}, {'attr_id': 10, 'val': 'false'}]





So for the first record, the new columns I am trying to create would be attr_id7, attr_id8, attr_id9, attr_id10, attr_id11 and have values 4.00,2.50,1750,false,false



Considering converting column content into proper Python dictionary and then using something like the answer Splitting dictionary/list inside a Pandas Column into Separate Columns










share|improve this question
















How do you convert a column in a Python Pandas DataFrame that has one column with name value pairs into additional columns within the same dataframe.



The column (attrs) with the named value pairs has values like :






[{'attr_id': 7, 'val': '4.00'}, {'attr_id': 8, 'val': '2.50'}, {'attr_id': 9, 'val': '1750'}, {'attr_id': 11, 'val': 'false'}, {'attr_id': 10, 'val': 'false'}]
[{'attr_id': 7, 'val': '2.00'}, {'attr_id': 8, 'val': '1.00'}, {'attr_id': 11, 'val': 'false'}, {'attr_id': 10, 'val': 'false'}]
[{'attr_id': 11, 'val': 'false'}, {'attr_id': 10, 'val': 'false'}]





So for the first record, the new columns I am trying to create would be attr_id7, attr_id8, attr_id9, attr_id10, attr_id11 and have values 4.00,2.50,1750,false,false



Considering converting column content into proper Python dictionary and then using something like the answer Splitting dictionary/list inside a Pandas Column into Separate Columns






[{'attr_id': 7, 'val': '4.00'}, {'attr_id': 8, 'val': '2.50'}, {'attr_id': 9, 'val': '1750'}, {'attr_id': 11, 'val': 'false'}, {'attr_id': 10, 'val': 'false'}]
[{'attr_id': 7, 'val': '2.00'}, {'attr_id': 8, 'val': '1.00'}, {'attr_id': 11, 'val': 'false'}, {'attr_id': 10, 'val': 'false'}]
[{'attr_id': 11, 'val': 'false'}, {'attr_id': 10, 'val': 'false'}]





[{'attr_id': 7, 'val': '4.00'}, {'attr_id': 8, 'val': '2.50'}, {'attr_id': 9, 'val': '1750'}, {'attr_id': 11, 'val': 'false'}, {'attr_id': 10, 'val': 'false'}]
[{'attr_id': 7, 'val': '2.00'}, {'attr_id': 8, 'val': '1.00'}, {'attr_id': 11, 'val': 'false'}, {'attr_id': 10, 'val': 'false'}]
[{'attr_id': 11, 'val': 'false'}, {'attr_id': 10, 'val': 'false'}]






python json pandas






share|improve this question















share|improve this question













share|improve this question




share|improve this question








edited Nov 19 '18 at 5:10







user468648

















asked Nov 19 '18 at 3:57









user468648user468648

152312




152312













  • If these are row-specific, it might be better to unpack the attr_id into a column and val into a column, though I'm not sure if val would have a namespace collision within pandas or not, so you may want to proceed with caution on that particular column name

    – C.Nivs
    Nov 19 '18 at 4:07



















  • If these are row-specific, it might be better to unpack the attr_id into a column and val into a column, though I'm not sure if val would have a namespace collision within pandas or not, so you may want to proceed with caution on that particular column name

    – C.Nivs
    Nov 19 '18 at 4:07

















If these are row-specific, it might be better to unpack the attr_id into a column and val into a column, though I'm not sure if val would have a namespace collision within pandas or not, so you may want to proceed with caution on that particular column name

– C.Nivs
Nov 19 '18 at 4:07





If these are row-specific, it might be better to unpack the attr_id into a column and val into a column, though I'm not sure if val would have a namespace collision within pandas or not, so you may want to proceed with caution on that particular column name

– C.Nivs
Nov 19 '18 at 4:07












1 Answer
1






active

oldest

votes


















1














Maybe something like the below:



import pandas as pd
import numpy as np

l=[[{'attr_id': 7, 'val': '4.00'}, {'attr_id': 8, 'val': '2.50'}, {'attr_id': 9, 'val': '1750'}, {'attr_id': 11, 'val': 'false'}, {'attr_id': 10, 'val': 'false'}],
[{'attr_id': 7, 'val': '2.00'}, {'attr_id': 8, 'val': '1.00'}, {'attr_id': 11, 'val': 'false'}, {'attr_id': 10, 'val': 'false'}],
[{'attr_id': 11, 'val': 'false'}, {'attr_id': 10, 'val': 'false'}],]

d =
for i in l:
q={}
for x in i:
q['attr_id{}'.format(x['attr_id'])]=x['val']
d.append(q)

df = pd.DataFrame(d)
print(df)


.



  attr_id10 attr_id11 attr_id7 attr_id8 attr_id9
0 false false 4.00 2.50 1750
1 false false 2.00 1.00 NaN
2 false false NaN NaN NaN





share|improve this answer























    Your Answer






    StackExchange.ifUsing("editor", function () {
    StackExchange.using("externalEditor", function () {
    StackExchange.using("snippets", function () {
    StackExchange.snippets.init();
    });
    });
    }, "code-snippets");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "1"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53368124%2fconvert-name-value-pairs-into-new-pandas-data-columns%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    1














    Maybe something like the below:



    import pandas as pd
    import numpy as np

    l=[[{'attr_id': 7, 'val': '4.00'}, {'attr_id': 8, 'val': '2.50'}, {'attr_id': 9, 'val': '1750'}, {'attr_id': 11, 'val': 'false'}, {'attr_id': 10, 'val': 'false'}],
    [{'attr_id': 7, 'val': '2.00'}, {'attr_id': 8, 'val': '1.00'}, {'attr_id': 11, 'val': 'false'}, {'attr_id': 10, 'val': 'false'}],
    [{'attr_id': 11, 'val': 'false'}, {'attr_id': 10, 'val': 'false'}],]

    d =
    for i in l:
    q={}
    for x in i:
    q['attr_id{}'.format(x['attr_id'])]=x['val']
    d.append(q)

    df = pd.DataFrame(d)
    print(df)


    .



      attr_id10 attr_id11 attr_id7 attr_id8 attr_id9
    0 false false 4.00 2.50 1750
    1 false false 2.00 1.00 NaN
    2 false false NaN NaN NaN





    share|improve this answer




























      1














      Maybe something like the below:



      import pandas as pd
      import numpy as np

      l=[[{'attr_id': 7, 'val': '4.00'}, {'attr_id': 8, 'val': '2.50'}, {'attr_id': 9, 'val': '1750'}, {'attr_id': 11, 'val': 'false'}, {'attr_id': 10, 'val': 'false'}],
      [{'attr_id': 7, 'val': '2.00'}, {'attr_id': 8, 'val': '1.00'}, {'attr_id': 11, 'val': 'false'}, {'attr_id': 10, 'val': 'false'}],
      [{'attr_id': 11, 'val': 'false'}, {'attr_id': 10, 'val': 'false'}],]

      d =
      for i in l:
      q={}
      for x in i:
      q['attr_id{}'.format(x['attr_id'])]=x['val']
      d.append(q)

      df = pd.DataFrame(d)
      print(df)


      .



        attr_id10 attr_id11 attr_id7 attr_id8 attr_id9
      0 false false 4.00 2.50 1750
      1 false false 2.00 1.00 NaN
      2 false false NaN NaN NaN





      share|improve this answer


























        1












        1








        1







        Maybe something like the below:



        import pandas as pd
        import numpy as np

        l=[[{'attr_id': 7, 'val': '4.00'}, {'attr_id': 8, 'val': '2.50'}, {'attr_id': 9, 'val': '1750'}, {'attr_id': 11, 'val': 'false'}, {'attr_id': 10, 'val': 'false'}],
        [{'attr_id': 7, 'val': '2.00'}, {'attr_id': 8, 'val': '1.00'}, {'attr_id': 11, 'val': 'false'}, {'attr_id': 10, 'val': 'false'}],
        [{'attr_id': 11, 'val': 'false'}, {'attr_id': 10, 'val': 'false'}],]

        d =
        for i in l:
        q={}
        for x in i:
        q['attr_id{}'.format(x['attr_id'])]=x['val']
        d.append(q)

        df = pd.DataFrame(d)
        print(df)


        .



          attr_id10 attr_id11 attr_id7 attr_id8 attr_id9
        0 false false 4.00 2.50 1750
        1 false false 2.00 1.00 NaN
        2 false false NaN NaN NaN





        share|improve this answer













        Maybe something like the below:



        import pandas as pd
        import numpy as np

        l=[[{'attr_id': 7, 'val': '4.00'}, {'attr_id': 8, 'val': '2.50'}, {'attr_id': 9, 'val': '1750'}, {'attr_id': 11, 'val': 'false'}, {'attr_id': 10, 'val': 'false'}],
        [{'attr_id': 7, 'val': '2.00'}, {'attr_id': 8, 'val': '1.00'}, {'attr_id': 11, 'val': 'false'}, {'attr_id': 10, 'val': 'false'}],
        [{'attr_id': 11, 'val': 'false'}, {'attr_id': 10, 'val': 'false'}],]

        d =
        for i in l:
        q={}
        for x in i:
        q['attr_id{}'.format(x['attr_id'])]=x['val']
        d.append(q)

        df = pd.DataFrame(d)
        print(df)


        .



          attr_id10 attr_id11 attr_id7 attr_id8 attr_id9
        0 false false 4.00 2.50 1750
        1 false false 2.00 1.00 NaN
        2 false false NaN NaN NaN






        share|improve this answer












        share|improve this answer



        share|improve this answer










        answered Nov 19 '18 at 4:20









        tengteng

        817721




        817721






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Stack Overflow!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53368124%2fconvert-name-value-pairs-into-new-pandas-data-columns%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Guess what letter conforming each word

            Run scheduled task as local user group (not BUILTIN)

            Port of Spain