Custom Conv2D in Keras ValueError: An operation has `None` for gradient with self.kernel





.everyoneloves__top-leaderboard:empty,.everyoneloves__mid-leaderboard:empty,.everyoneloves__bot-mid-leaderboard:empty{ height:90px;width:728px;box-sizing:border-box;
}







0















I am converting this tools (ann4brains) from Caffe to Keras.



I already implemented the two custom types of 2D convolution (E2E and E2N).
I made the implementation based on the source code of _Conv, from Keras source code.1



The model compiles, but it fails during the fitting with the following message error:



ValueError: An operation has `None` for gradient. Please make sure that all of your ops have a gradient defined (i.e. are differentiable). Common ops without gradient: K.argmax, K.round, K.eval.


I googled and found this topic: Custom Keras Layer Troubles
The solution (remove the self.kernel = self.add_weight(...) worked for my case. But I am not feeling safe about this solution. Why should I remove this, if it is in the _Conv class? What will be my kernel if I comment this? Is there any other recommended solution?



Thanks!



Bellow more information about the case:
Keras version: 2.2.4
Input shape: (21, 21, 1)
Model Summary:



Layer (type)                 Output Shape              Param #   
=================================================================
conv_e2e_20 (ConvE2E) (None, 21, 21, 1, 32) 1376
_________________________________________________________________
conv_e2n_16 (ConvE2N) (None, 21, 1, 1, 64) 43072
_________________________________________________________________
flatten_28 (Flatten) (None, 1344) 0
_________________________________________________________________
dense_91 (Dense) (None, 128) 172160
_________________________________________________________________
dropout_84 (Dropout) (None, 128) 0
_________________________________________________________________
dense_92 (Dense) (None, 30) 3870
_________________________________________________________________
dropout_85 (Dropout) (None, 30) 0
_________________________________________________________________
dense_93 (Dense) (None, 30) 930
_________________________________________________________________
dropout_86 (Dropout) (None, 30) 0
_________________________________________________________________
dense_94 (Dense) (None, 2) 62
=================================================================
Total params: 221,470
Trainable params: 221,470
Non-trainable params: 0
_________________________________________________________________




E2E Layer



class ConvE2E(Layer):
def __init__(self,
filters,
kernel_size,
strides=1,
padding='valid',
data_format=None,
dilation_rate=1,
activation=None,
use_bias=True,
kernel_initializer='glorot_uniform',
bias_initializer='zeros',
kernel_regularizer=None,
bias_regularizer=None,
activity_regularizer=None,
kernel_constraint=None,
bias_constraint=None,
**kwargs):
super(ConvE2E, self).__init__(**kwargs)
self.rank = 2
self.filters = filters
self.kernel_size = kernel_size
self.strides = conv_utils.normalize_tuple(strides, self.rank, 'strides')
self.padding = conv_utils.normalize_padding(padding)
self.data_format = K.common.normalize_data_format(data_format)
self.dilation_rate = conv_utils.normalize_tuple(dilation_rate, self.rank,
'dilation_rate')

self.activation = activations.get(activation)
self.use_bias = use_bias
self.kernel_initializer = initializers.get(kernel_initializer)
self.bias_initializer = initializers.get(bias_initializer)
self.kernel_regularizer = regularizers.get(kernel_regularizer)
self.bias_regularizer = regularizers.get(bias_regularizer)
self.activity_regularizer = regularizers.get(activity_regularizer)
self.kernel_constraint = constraints.get(kernel_constraint)
self.bias_constraint = constraints.get(bias_constraint)
self.input_spec = InputSpec(ndim=self.rank + 2)

def build(self, input_shape):
if self.data_format == 'channels_first':
channel_axis = 1
else:
channel_axis = -1
if input_shape[channel_axis] is None:
raise ValueError('The channel dimension of the inputs '
'should be defined. Found `None`.')
self.input_dim = input_shape[channel_axis]
kernel_shape = self.kernel_size + (self.input_dim, self.filters)

# self.kernel = self.add_weight(shape=kernel_shape,
# initializer=self.kernel_initializer,
# name='kernel',
# regularizer=self.kernel_regularizer,
# constraint=self.kernel_constraint)
if self.use_bias:
self.bias = self.add_weight(shape=(self.filters,),
initializer=self.bias_initializer,
name='bias',
regularizer=self.bias_regularizer,
constraint=self.bias_constraint)
else:
self.bias = None
# Set input spec.
self.input_spec = InputSpec(ndim=self.rank + 2,
axes={channel_axis: self.input_dim})
self.built = True

def call(self, inputs):
kernel_h = self.kernel_size[0]
kernel_w = self.kernel_size[1]

kernel_size_h = conv_utils.normalize_tuple((kernel_h, 1), 2, 'kernel_size')
kernel_shape_h = kernel_size_h + (self.input_dim, self.filters)
kernel_dx1 = self.add_weight(shape=kernel_shape_h,
initializer=self.kernel_initializer,
name='kernel',
regularizer=self.kernel_regularizer,
constraint=self.kernel_constraint)

kernel_size_w = conv_utils.normalize_tuple((1, kernel_w), 2, 'kernel_size')
kernel_shape_w = kernel_size_w + (self.input_dim, self.filters)
kernel_1xd = self.add_weight(shape=kernel_shape_w,
initializer=self.kernel_initializer,
name='kernel',
regularizer=self.kernel_regularizer,
constraint=self.kernel_constraint)

outputs_dx1 = K.conv2d(inputs, kernel_dx1,strides=self.strides,
padding=self.padding, data_format=self.data_format,
dilation_rate=self.dilation_rate)
outputs_dx1_dxd = K.repeat_elements(outputs_dx1, kernel_w, 1)

outputs_1xd = K.conv2d(inputs, kernel_1xd, strides=self.strides,
padding=self.padding, data_format=self.data_format,
dilation_rate=self.dilation_rate)
outputs_1xd_dxd = K.repeat_elements(outputs_1xd, kernel_h, 2)

outputs = Add()([outputs_dx1_dxd, outputs_1xd_dxd])

if self.use_bias:
outputs = K.bias_add(
outputs,
self.bias,
data_format=self.data_format)

if self.activation is not None:
return self.activation(outputs)

return outputs

def compute_output_shape(self, input_shape):
if self.data_format == 'channels_last':
output_shape = (input_shape) + (self.filters,)
return output_shape
if self.data_format == 'channels_first':
output_shape = (input_shape[0], self.filters) + (input_shape[1:])
return output_shape

def get_config(self):
config = {
'rank': self.rank,
'filters': self.filters,
'kernel_size': self.kernel_size,
'strides': self.strides,
'padding': self.padding,
'data_format': self.data_format,
'dilation_rate': self.dilation_rate,
'activation': activations.serialize(self.activation),
'use_bias': self.use_bias,
'kernel_initializer': initializers.serialize(self.kernel_initializer),
'bias_initializer': initializers.serialize(self.bias_initializer),
'kernel_regularizer': regularizers.serialize(self.kernel_regularizer),
'bias_regularizer': regularizers.serialize(self.bias_regularizer),
'activity_regularizer':
regularizers.serialize(self.activity_regularizer),
'kernel_constraint': constraints.serialize(self.kernel_constraint),
'bias_constraint': constraints.serialize(self.bias_constraint)
}
base_config = super(ConvE2E, self).get_config()
return dict(list(base_config.items()) + list(config.items()))


E2N Layer



class ConvE2N(Layer):
def __init__(self,
filters,
kernel_size,
strides=1,
padding='valid',
data_format=None,
dilation_rate=1,
activation=None,
use_bias=True,
kernel_initializer='glorot_uniform',
bias_initializer='zeros',
kernel_regularizer=None,
bias_regularizer=None,
activity_regularizer=None,
kernel_constraint=None,
bias_constraint=None,
**kwargs):
super(ConvE2N, self).__init__(**kwargs)
self.rank = 2
self.filters = filters
self.kernel_size = kernel_size
self.strides = conv_utils.normalize_tuple(strides, self.rank, 'strides')
self.padding = conv_utils.normalize_padding(padding)
self.data_format = K.common.normalize_data_format(data_format)
self.dilation_rate = conv_utils.normalize_tuple(dilation_rate, self.rank,
'dilation_rate')

self.activation = activations.get(activation)
self.use_bias = use_bias
self.kernel_initializer = initializers.get(kernel_initializer)
self.bias_initializer = initializers.get(bias_initializer)
self.kernel_regularizer = regularizers.get(kernel_regularizer)
self.bias_regularizer = regularizers.get(bias_regularizer)
self.activity_regularizer = regularizers.get(activity_regularizer)
self.kernel_constraint = constraints.get(kernel_constraint)
self.bias_constraint = constraints.get(bias_constraint)
self.input_spec = InputSpec(ndim=self.rank + 2)

def build(self, input_shape):
if self.data_format == 'channels_first':
channel_axis = 1
else:
channel_axis = -1
if input_shape[channel_axis] is None:
raise ValueError('The channel dimension of the inputs '
'should be defined. Found `None`.')
self.input_dim = input_shape[channel_axis]
kernel_shape = self.kernel_size + (self.input_dim, self.filters)

# self.kernel = self.add_weight(shape=kernel_shape,
# initializer=self.kernel_initializer,
# name='kernel',
# regularizer=self.kernel_regularizer,
# constraint=self.kernel_constraint)
if self.use_bias:
self.bias = self.add_weight(shape=(self.filters,),
initializer=self.bias_initializer,
name='bias',
regularizer=self.bias_regularizer,
constraint=self.bias_constraint)
else:
self.bias = None
# Set input spec.
self.input_spec = InputSpec(ndim=self.rank + 2,
axes={channel_axis: self.input_dim})
self.built = True

def call(self, inputs):
kernel_h = self.kernel_size[0]
kernel_w = self.kernel_size[1]

kernel_size_w = conv_utils.normalize_tuple((1, kernel_w), 2, 'kernel_size')
kernel_shape_w = kernel_size_w + (self.input_dim, self.filters)
kernel_1xd = self.add_weight(shape=kernel_shape_w,
initializer=self.kernel_initializer,
name='kernel',
regularizer=self.kernel_regularizer,
constraint=self.kernel_constraint)

outputs_1xd = K.conv2d(inputs, kernel_1xd, strides=self.strides,
padding=self.padding, data_format=self.data_format,
dilation_rate=self.dilation_rate)
outputs = outputs_1xd

if self.use_bias:
outputs = K.bias_add(
outputs,
self.bias,
data_format=self.data_format)

if self.activation is not None:
return self.activation(outputs)

return outputs

def compute_output_shape(self, input_shape):
if self.data_format == 'channels_last':
output_shape = (input_shape[0], self.kernel_size[0], 1, input_shape[-2], self.filters)
return output_shape
if self.data_format == 'channels_first':
output_shape = input_shape[0:2] + (self.kernel_size[0], 1, self.filters)
return output_shape

def get_config(self):
config = {
'rank': self.rank,
'filters': self.filters,
'kernel_size': self.kernel_size,
'strides': self.strides,
'padding': self.padding,
'data_format': self.data_format,
'dilation_rate': self.dilation_rate,
'activation': activations.serialize(self.activation),
'use_bias': self.use_bias,
'kernel_initializer': initializers.serialize(self.kernel_initializer),
'bias_initializer': initializers.serialize(self.bias_initializer),
'kernel_regularizer': regularizers.serialize(self.kernel_regularizer),
'bias_regularizer': regularizers.serialize(self.bias_regularizer),
'activity_regularizer':
regularizers.serialize(self.activity_regularizer),
'kernel_constraint': constraints.serialize(self.kernel_constraint),
'bias_constraint': constraints.serialize(self.bias_constraint)
}
base_config = super(ConvE2N, self).get_config()
return dict(list(base_config.items()) + list(config.items()))









share|improve this question





























    0















    I am converting this tools (ann4brains) from Caffe to Keras.



    I already implemented the two custom types of 2D convolution (E2E and E2N).
    I made the implementation based on the source code of _Conv, from Keras source code.1



    The model compiles, but it fails during the fitting with the following message error:



    ValueError: An operation has `None` for gradient. Please make sure that all of your ops have a gradient defined (i.e. are differentiable). Common ops without gradient: K.argmax, K.round, K.eval.


    I googled and found this topic: Custom Keras Layer Troubles
    The solution (remove the self.kernel = self.add_weight(...) worked for my case. But I am not feeling safe about this solution. Why should I remove this, if it is in the _Conv class? What will be my kernel if I comment this? Is there any other recommended solution?



    Thanks!



    Bellow more information about the case:
    Keras version: 2.2.4
    Input shape: (21, 21, 1)
    Model Summary:



    Layer (type)                 Output Shape              Param #   
    =================================================================
    conv_e2e_20 (ConvE2E) (None, 21, 21, 1, 32) 1376
    _________________________________________________________________
    conv_e2n_16 (ConvE2N) (None, 21, 1, 1, 64) 43072
    _________________________________________________________________
    flatten_28 (Flatten) (None, 1344) 0
    _________________________________________________________________
    dense_91 (Dense) (None, 128) 172160
    _________________________________________________________________
    dropout_84 (Dropout) (None, 128) 0
    _________________________________________________________________
    dense_92 (Dense) (None, 30) 3870
    _________________________________________________________________
    dropout_85 (Dropout) (None, 30) 0
    _________________________________________________________________
    dense_93 (Dense) (None, 30) 930
    _________________________________________________________________
    dropout_86 (Dropout) (None, 30) 0
    _________________________________________________________________
    dense_94 (Dense) (None, 2) 62
    =================================================================
    Total params: 221,470
    Trainable params: 221,470
    Non-trainable params: 0
    _________________________________________________________________




    E2E Layer



    class ConvE2E(Layer):
    def __init__(self,
    filters,
    kernel_size,
    strides=1,
    padding='valid',
    data_format=None,
    dilation_rate=1,
    activation=None,
    use_bias=True,
    kernel_initializer='glorot_uniform',
    bias_initializer='zeros',
    kernel_regularizer=None,
    bias_regularizer=None,
    activity_regularizer=None,
    kernel_constraint=None,
    bias_constraint=None,
    **kwargs):
    super(ConvE2E, self).__init__(**kwargs)
    self.rank = 2
    self.filters = filters
    self.kernel_size = kernel_size
    self.strides = conv_utils.normalize_tuple(strides, self.rank, 'strides')
    self.padding = conv_utils.normalize_padding(padding)
    self.data_format = K.common.normalize_data_format(data_format)
    self.dilation_rate = conv_utils.normalize_tuple(dilation_rate, self.rank,
    'dilation_rate')

    self.activation = activations.get(activation)
    self.use_bias = use_bias
    self.kernel_initializer = initializers.get(kernel_initializer)
    self.bias_initializer = initializers.get(bias_initializer)
    self.kernel_regularizer = regularizers.get(kernel_regularizer)
    self.bias_regularizer = regularizers.get(bias_regularizer)
    self.activity_regularizer = regularizers.get(activity_regularizer)
    self.kernel_constraint = constraints.get(kernel_constraint)
    self.bias_constraint = constraints.get(bias_constraint)
    self.input_spec = InputSpec(ndim=self.rank + 2)

    def build(self, input_shape):
    if self.data_format == 'channels_first':
    channel_axis = 1
    else:
    channel_axis = -1
    if input_shape[channel_axis] is None:
    raise ValueError('The channel dimension of the inputs '
    'should be defined. Found `None`.')
    self.input_dim = input_shape[channel_axis]
    kernel_shape = self.kernel_size + (self.input_dim, self.filters)

    # self.kernel = self.add_weight(shape=kernel_shape,
    # initializer=self.kernel_initializer,
    # name='kernel',
    # regularizer=self.kernel_regularizer,
    # constraint=self.kernel_constraint)
    if self.use_bias:
    self.bias = self.add_weight(shape=(self.filters,),
    initializer=self.bias_initializer,
    name='bias',
    regularizer=self.bias_regularizer,
    constraint=self.bias_constraint)
    else:
    self.bias = None
    # Set input spec.
    self.input_spec = InputSpec(ndim=self.rank + 2,
    axes={channel_axis: self.input_dim})
    self.built = True

    def call(self, inputs):
    kernel_h = self.kernel_size[0]
    kernel_w = self.kernel_size[1]

    kernel_size_h = conv_utils.normalize_tuple((kernel_h, 1), 2, 'kernel_size')
    kernel_shape_h = kernel_size_h + (self.input_dim, self.filters)
    kernel_dx1 = self.add_weight(shape=kernel_shape_h,
    initializer=self.kernel_initializer,
    name='kernel',
    regularizer=self.kernel_regularizer,
    constraint=self.kernel_constraint)

    kernel_size_w = conv_utils.normalize_tuple((1, kernel_w), 2, 'kernel_size')
    kernel_shape_w = kernel_size_w + (self.input_dim, self.filters)
    kernel_1xd = self.add_weight(shape=kernel_shape_w,
    initializer=self.kernel_initializer,
    name='kernel',
    regularizer=self.kernel_regularizer,
    constraint=self.kernel_constraint)

    outputs_dx1 = K.conv2d(inputs, kernel_dx1,strides=self.strides,
    padding=self.padding, data_format=self.data_format,
    dilation_rate=self.dilation_rate)
    outputs_dx1_dxd = K.repeat_elements(outputs_dx1, kernel_w, 1)

    outputs_1xd = K.conv2d(inputs, kernel_1xd, strides=self.strides,
    padding=self.padding, data_format=self.data_format,
    dilation_rate=self.dilation_rate)
    outputs_1xd_dxd = K.repeat_elements(outputs_1xd, kernel_h, 2)

    outputs = Add()([outputs_dx1_dxd, outputs_1xd_dxd])

    if self.use_bias:
    outputs = K.bias_add(
    outputs,
    self.bias,
    data_format=self.data_format)

    if self.activation is not None:
    return self.activation(outputs)

    return outputs

    def compute_output_shape(self, input_shape):
    if self.data_format == 'channels_last':
    output_shape = (input_shape) + (self.filters,)
    return output_shape
    if self.data_format == 'channels_first':
    output_shape = (input_shape[0], self.filters) + (input_shape[1:])
    return output_shape

    def get_config(self):
    config = {
    'rank': self.rank,
    'filters': self.filters,
    'kernel_size': self.kernel_size,
    'strides': self.strides,
    'padding': self.padding,
    'data_format': self.data_format,
    'dilation_rate': self.dilation_rate,
    'activation': activations.serialize(self.activation),
    'use_bias': self.use_bias,
    'kernel_initializer': initializers.serialize(self.kernel_initializer),
    'bias_initializer': initializers.serialize(self.bias_initializer),
    'kernel_regularizer': regularizers.serialize(self.kernel_regularizer),
    'bias_regularizer': regularizers.serialize(self.bias_regularizer),
    'activity_regularizer':
    regularizers.serialize(self.activity_regularizer),
    'kernel_constraint': constraints.serialize(self.kernel_constraint),
    'bias_constraint': constraints.serialize(self.bias_constraint)
    }
    base_config = super(ConvE2E, self).get_config()
    return dict(list(base_config.items()) + list(config.items()))


    E2N Layer



    class ConvE2N(Layer):
    def __init__(self,
    filters,
    kernel_size,
    strides=1,
    padding='valid',
    data_format=None,
    dilation_rate=1,
    activation=None,
    use_bias=True,
    kernel_initializer='glorot_uniform',
    bias_initializer='zeros',
    kernel_regularizer=None,
    bias_regularizer=None,
    activity_regularizer=None,
    kernel_constraint=None,
    bias_constraint=None,
    **kwargs):
    super(ConvE2N, self).__init__(**kwargs)
    self.rank = 2
    self.filters = filters
    self.kernel_size = kernel_size
    self.strides = conv_utils.normalize_tuple(strides, self.rank, 'strides')
    self.padding = conv_utils.normalize_padding(padding)
    self.data_format = K.common.normalize_data_format(data_format)
    self.dilation_rate = conv_utils.normalize_tuple(dilation_rate, self.rank,
    'dilation_rate')

    self.activation = activations.get(activation)
    self.use_bias = use_bias
    self.kernel_initializer = initializers.get(kernel_initializer)
    self.bias_initializer = initializers.get(bias_initializer)
    self.kernel_regularizer = regularizers.get(kernel_regularizer)
    self.bias_regularizer = regularizers.get(bias_regularizer)
    self.activity_regularizer = regularizers.get(activity_regularizer)
    self.kernel_constraint = constraints.get(kernel_constraint)
    self.bias_constraint = constraints.get(bias_constraint)
    self.input_spec = InputSpec(ndim=self.rank + 2)

    def build(self, input_shape):
    if self.data_format == 'channels_first':
    channel_axis = 1
    else:
    channel_axis = -1
    if input_shape[channel_axis] is None:
    raise ValueError('The channel dimension of the inputs '
    'should be defined. Found `None`.')
    self.input_dim = input_shape[channel_axis]
    kernel_shape = self.kernel_size + (self.input_dim, self.filters)

    # self.kernel = self.add_weight(shape=kernel_shape,
    # initializer=self.kernel_initializer,
    # name='kernel',
    # regularizer=self.kernel_regularizer,
    # constraint=self.kernel_constraint)
    if self.use_bias:
    self.bias = self.add_weight(shape=(self.filters,),
    initializer=self.bias_initializer,
    name='bias',
    regularizer=self.bias_regularizer,
    constraint=self.bias_constraint)
    else:
    self.bias = None
    # Set input spec.
    self.input_spec = InputSpec(ndim=self.rank + 2,
    axes={channel_axis: self.input_dim})
    self.built = True

    def call(self, inputs):
    kernel_h = self.kernel_size[0]
    kernel_w = self.kernel_size[1]

    kernel_size_w = conv_utils.normalize_tuple((1, kernel_w), 2, 'kernel_size')
    kernel_shape_w = kernel_size_w + (self.input_dim, self.filters)
    kernel_1xd = self.add_weight(shape=kernel_shape_w,
    initializer=self.kernel_initializer,
    name='kernel',
    regularizer=self.kernel_regularizer,
    constraint=self.kernel_constraint)

    outputs_1xd = K.conv2d(inputs, kernel_1xd, strides=self.strides,
    padding=self.padding, data_format=self.data_format,
    dilation_rate=self.dilation_rate)
    outputs = outputs_1xd

    if self.use_bias:
    outputs = K.bias_add(
    outputs,
    self.bias,
    data_format=self.data_format)

    if self.activation is not None:
    return self.activation(outputs)

    return outputs

    def compute_output_shape(self, input_shape):
    if self.data_format == 'channels_last':
    output_shape = (input_shape[0], self.kernel_size[0], 1, input_shape[-2], self.filters)
    return output_shape
    if self.data_format == 'channels_first':
    output_shape = input_shape[0:2] + (self.kernel_size[0], 1, self.filters)
    return output_shape

    def get_config(self):
    config = {
    'rank': self.rank,
    'filters': self.filters,
    'kernel_size': self.kernel_size,
    'strides': self.strides,
    'padding': self.padding,
    'data_format': self.data_format,
    'dilation_rate': self.dilation_rate,
    'activation': activations.serialize(self.activation),
    'use_bias': self.use_bias,
    'kernel_initializer': initializers.serialize(self.kernel_initializer),
    'bias_initializer': initializers.serialize(self.bias_initializer),
    'kernel_regularizer': regularizers.serialize(self.kernel_regularizer),
    'bias_regularizer': regularizers.serialize(self.bias_regularizer),
    'activity_regularizer':
    regularizers.serialize(self.activity_regularizer),
    'kernel_constraint': constraints.serialize(self.kernel_constraint),
    'bias_constraint': constraints.serialize(self.bias_constraint)
    }
    base_config = super(ConvE2N, self).get_config()
    return dict(list(base_config.items()) + list(config.items()))









    share|improve this question

























      0












      0








      0








      I am converting this tools (ann4brains) from Caffe to Keras.



      I already implemented the two custom types of 2D convolution (E2E and E2N).
      I made the implementation based on the source code of _Conv, from Keras source code.1



      The model compiles, but it fails during the fitting with the following message error:



      ValueError: An operation has `None` for gradient. Please make sure that all of your ops have a gradient defined (i.e. are differentiable). Common ops without gradient: K.argmax, K.round, K.eval.


      I googled and found this topic: Custom Keras Layer Troubles
      The solution (remove the self.kernel = self.add_weight(...) worked for my case. But I am not feeling safe about this solution. Why should I remove this, if it is in the _Conv class? What will be my kernel if I comment this? Is there any other recommended solution?



      Thanks!



      Bellow more information about the case:
      Keras version: 2.2.4
      Input shape: (21, 21, 1)
      Model Summary:



      Layer (type)                 Output Shape              Param #   
      =================================================================
      conv_e2e_20 (ConvE2E) (None, 21, 21, 1, 32) 1376
      _________________________________________________________________
      conv_e2n_16 (ConvE2N) (None, 21, 1, 1, 64) 43072
      _________________________________________________________________
      flatten_28 (Flatten) (None, 1344) 0
      _________________________________________________________________
      dense_91 (Dense) (None, 128) 172160
      _________________________________________________________________
      dropout_84 (Dropout) (None, 128) 0
      _________________________________________________________________
      dense_92 (Dense) (None, 30) 3870
      _________________________________________________________________
      dropout_85 (Dropout) (None, 30) 0
      _________________________________________________________________
      dense_93 (Dense) (None, 30) 930
      _________________________________________________________________
      dropout_86 (Dropout) (None, 30) 0
      _________________________________________________________________
      dense_94 (Dense) (None, 2) 62
      =================================================================
      Total params: 221,470
      Trainable params: 221,470
      Non-trainable params: 0
      _________________________________________________________________




      E2E Layer



      class ConvE2E(Layer):
      def __init__(self,
      filters,
      kernel_size,
      strides=1,
      padding='valid',
      data_format=None,
      dilation_rate=1,
      activation=None,
      use_bias=True,
      kernel_initializer='glorot_uniform',
      bias_initializer='zeros',
      kernel_regularizer=None,
      bias_regularizer=None,
      activity_regularizer=None,
      kernel_constraint=None,
      bias_constraint=None,
      **kwargs):
      super(ConvE2E, self).__init__(**kwargs)
      self.rank = 2
      self.filters = filters
      self.kernel_size = kernel_size
      self.strides = conv_utils.normalize_tuple(strides, self.rank, 'strides')
      self.padding = conv_utils.normalize_padding(padding)
      self.data_format = K.common.normalize_data_format(data_format)
      self.dilation_rate = conv_utils.normalize_tuple(dilation_rate, self.rank,
      'dilation_rate')

      self.activation = activations.get(activation)
      self.use_bias = use_bias
      self.kernel_initializer = initializers.get(kernel_initializer)
      self.bias_initializer = initializers.get(bias_initializer)
      self.kernel_regularizer = regularizers.get(kernel_regularizer)
      self.bias_regularizer = regularizers.get(bias_regularizer)
      self.activity_regularizer = regularizers.get(activity_regularizer)
      self.kernel_constraint = constraints.get(kernel_constraint)
      self.bias_constraint = constraints.get(bias_constraint)
      self.input_spec = InputSpec(ndim=self.rank + 2)

      def build(self, input_shape):
      if self.data_format == 'channels_first':
      channel_axis = 1
      else:
      channel_axis = -1
      if input_shape[channel_axis] is None:
      raise ValueError('The channel dimension of the inputs '
      'should be defined. Found `None`.')
      self.input_dim = input_shape[channel_axis]
      kernel_shape = self.kernel_size + (self.input_dim, self.filters)

      # self.kernel = self.add_weight(shape=kernel_shape,
      # initializer=self.kernel_initializer,
      # name='kernel',
      # regularizer=self.kernel_regularizer,
      # constraint=self.kernel_constraint)
      if self.use_bias:
      self.bias = self.add_weight(shape=(self.filters,),
      initializer=self.bias_initializer,
      name='bias',
      regularizer=self.bias_regularizer,
      constraint=self.bias_constraint)
      else:
      self.bias = None
      # Set input spec.
      self.input_spec = InputSpec(ndim=self.rank + 2,
      axes={channel_axis: self.input_dim})
      self.built = True

      def call(self, inputs):
      kernel_h = self.kernel_size[0]
      kernel_w = self.kernel_size[1]

      kernel_size_h = conv_utils.normalize_tuple((kernel_h, 1), 2, 'kernel_size')
      kernel_shape_h = kernel_size_h + (self.input_dim, self.filters)
      kernel_dx1 = self.add_weight(shape=kernel_shape_h,
      initializer=self.kernel_initializer,
      name='kernel',
      regularizer=self.kernel_regularizer,
      constraint=self.kernel_constraint)

      kernel_size_w = conv_utils.normalize_tuple((1, kernel_w), 2, 'kernel_size')
      kernel_shape_w = kernel_size_w + (self.input_dim, self.filters)
      kernel_1xd = self.add_weight(shape=kernel_shape_w,
      initializer=self.kernel_initializer,
      name='kernel',
      regularizer=self.kernel_regularizer,
      constraint=self.kernel_constraint)

      outputs_dx1 = K.conv2d(inputs, kernel_dx1,strides=self.strides,
      padding=self.padding, data_format=self.data_format,
      dilation_rate=self.dilation_rate)
      outputs_dx1_dxd = K.repeat_elements(outputs_dx1, kernel_w, 1)

      outputs_1xd = K.conv2d(inputs, kernel_1xd, strides=self.strides,
      padding=self.padding, data_format=self.data_format,
      dilation_rate=self.dilation_rate)
      outputs_1xd_dxd = K.repeat_elements(outputs_1xd, kernel_h, 2)

      outputs = Add()([outputs_dx1_dxd, outputs_1xd_dxd])

      if self.use_bias:
      outputs = K.bias_add(
      outputs,
      self.bias,
      data_format=self.data_format)

      if self.activation is not None:
      return self.activation(outputs)

      return outputs

      def compute_output_shape(self, input_shape):
      if self.data_format == 'channels_last':
      output_shape = (input_shape) + (self.filters,)
      return output_shape
      if self.data_format == 'channels_first':
      output_shape = (input_shape[0], self.filters) + (input_shape[1:])
      return output_shape

      def get_config(self):
      config = {
      'rank': self.rank,
      'filters': self.filters,
      'kernel_size': self.kernel_size,
      'strides': self.strides,
      'padding': self.padding,
      'data_format': self.data_format,
      'dilation_rate': self.dilation_rate,
      'activation': activations.serialize(self.activation),
      'use_bias': self.use_bias,
      'kernel_initializer': initializers.serialize(self.kernel_initializer),
      'bias_initializer': initializers.serialize(self.bias_initializer),
      'kernel_regularizer': regularizers.serialize(self.kernel_regularizer),
      'bias_regularizer': regularizers.serialize(self.bias_regularizer),
      'activity_regularizer':
      regularizers.serialize(self.activity_regularizer),
      'kernel_constraint': constraints.serialize(self.kernel_constraint),
      'bias_constraint': constraints.serialize(self.bias_constraint)
      }
      base_config = super(ConvE2E, self).get_config()
      return dict(list(base_config.items()) + list(config.items()))


      E2N Layer



      class ConvE2N(Layer):
      def __init__(self,
      filters,
      kernel_size,
      strides=1,
      padding='valid',
      data_format=None,
      dilation_rate=1,
      activation=None,
      use_bias=True,
      kernel_initializer='glorot_uniform',
      bias_initializer='zeros',
      kernel_regularizer=None,
      bias_regularizer=None,
      activity_regularizer=None,
      kernel_constraint=None,
      bias_constraint=None,
      **kwargs):
      super(ConvE2N, self).__init__(**kwargs)
      self.rank = 2
      self.filters = filters
      self.kernel_size = kernel_size
      self.strides = conv_utils.normalize_tuple(strides, self.rank, 'strides')
      self.padding = conv_utils.normalize_padding(padding)
      self.data_format = K.common.normalize_data_format(data_format)
      self.dilation_rate = conv_utils.normalize_tuple(dilation_rate, self.rank,
      'dilation_rate')

      self.activation = activations.get(activation)
      self.use_bias = use_bias
      self.kernel_initializer = initializers.get(kernel_initializer)
      self.bias_initializer = initializers.get(bias_initializer)
      self.kernel_regularizer = regularizers.get(kernel_regularizer)
      self.bias_regularizer = regularizers.get(bias_regularizer)
      self.activity_regularizer = regularizers.get(activity_regularizer)
      self.kernel_constraint = constraints.get(kernel_constraint)
      self.bias_constraint = constraints.get(bias_constraint)
      self.input_spec = InputSpec(ndim=self.rank + 2)

      def build(self, input_shape):
      if self.data_format == 'channels_first':
      channel_axis = 1
      else:
      channel_axis = -1
      if input_shape[channel_axis] is None:
      raise ValueError('The channel dimension of the inputs '
      'should be defined. Found `None`.')
      self.input_dim = input_shape[channel_axis]
      kernel_shape = self.kernel_size + (self.input_dim, self.filters)

      # self.kernel = self.add_weight(shape=kernel_shape,
      # initializer=self.kernel_initializer,
      # name='kernel',
      # regularizer=self.kernel_regularizer,
      # constraint=self.kernel_constraint)
      if self.use_bias:
      self.bias = self.add_weight(shape=(self.filters,),
      initializer=self.bias_initializer,
      name='bias',
      regularizer=self.bias_regularizer,
      constraint=self.bias_constraint)
      else:
      self.bias = None
      # Set input spec.
      self.input_spec = InputSpec(ndim=self.rank + 2,
      axes={channel_axis: self.input_dim})
      self.built = True

      def call(self, inputs):
      kernel_h = self.kernel_size[0]
      kernel_w = self.kernel_size[1]

      kernel_size_w = conv_utils.normalize_tuple((1, kernel_w), 2, 'kernel_size')
      kernel_shape_w = kernel_size_w + (self.input_dim, self.filters)
      kernel_1xd = self.add_weight(shape=kernel_shape_w,
      initializer=self.kernel_initializer,
      name='kernel',
      regularizer=self.kernel_regularizer,
      constraint=self.kernel_constraint)

      outputs_1xd = K.conv2d(inputs, kernel_1xd, strides=self.strides,
      padding=self.padding, data_format=self.data_format,
      dilation_rate=self.dilation_rate)
      outputs = outputs_1xd

      if self.use_bias:
      outputs = K.bias_add(
      outputs,
      self.bias,
      data_format=self.data_format)

      if self.activation is not None:
      return self.activation(outputs)

      return outputs

      def compute_output_shape(self, input_shape):
      if self.data_format == 'channels_last':
      output_shape = (input_shape[0], self.kernel_size[0], 1, input_shape[-2], self.filters)
      return output_shape
      if self.data_format == 'channels_first':
      output_shape = input_shape[0:2] + (self.kernel_size[0], 1, self.filters)
      return output_shape

      def get_config(self):
      config = {
      'rank': self.rank,
      'filters': self.filters,
      'kernel_size': self.kernel_size,
      'strides': self.strides,
      'padding': self.padding,
      'data_format': self.data_format,
      'dilation_rate': self.dilation_rate,
      'activation': activations.serialize(self.activation),
      'use_bias': self.use_bias,
      'kernel_initializer': initializers.serialize(self.kernel_initializer),
      'bias_initializer': initializers.serialize(self.bias_initializer),
      'kernel_regularizer': regularizers.serialize(self.kernel_regularizer),
      'bias_regularizer': regularizers.serialize(self.bias_regularizer),
      'activity_regularizer':
      regularizers.serialize(self.activity_regularizer),
      'kernel_constraint': constraints.serialize(self.kernel_constraint),
      'bias_constraint': constraints.serialize(self.bias_constraint)
      }
      base_config = super(ConvE2N, self).get_config()
      return dict(list(base_config.items()) + list(config.items()))









      share|improve this question














      I am converting this tools (ann4brains) from Caffe to Keras.



      I already implemented the two custom types of 2D convolution (E2E and E2N).
      I made the implementation based on the source code of _Conv, from Keras source code.1



      The model compiles, but it fails during the fitting with the following message error:



      ValueError: An operation has `None` for gradient. Please make sure that all of your ops have a gradient defined (i.e. are differentiable). Common ops without gradient: K.argmax, K.round, K.eval.


      I googled and found this topic: Custom Keras Layer Troubles
      The solution (remove the self.kernel = self.add_weight(...) worked for my case. But I am not feeling safe about this solution. Why should I remove this, if it is in the _Conv class? What will be my kernel if I comment this? Is there any other recommended solution?



      Thanks!



      Bellow more information about the case:
      Keras version: 2.2.4
      Input shape: (21, 21, 1)
      Model Summary:



      Layer (type)                 Output Shape              Param #   
      =================================================================
      conv_e2e_20 (ConvE2E) (None, 21, 21, 1, 32) 1376
      _________________________________________________________________
      conv_e2n_16 (ConvE2N) (None, 21, 1, 1, 64) 43072
      _________________________________________________________________
      flatten_28 (Flatten) (None, 1344) 0
      _________________________________________________________________
      dense_91 (Dense) (None, 128) 172160
      _________________________________________________________________
      dropout_84 (Dropout) (None, 128) 0
      _________________________________________________________________
      dense_92 (Dense) (None, 30) 3870
      _________________________________________________________________
      dropout_85 (Dropout) (None, 30) 0
      _________________________________________________________________
      dense_93 (Dense) (None, 30) 930
      _________________________________________________________________
      dropout_86 (Dropout) (None, 30) 0
      _________________________________________________________________
      dense_94 (Dense) (None, 2) 62
      =================================================================
      Total params: 221,470
      Trainable params: 221,470
      Non-trainable params: 0
      _________________________________________________________________




      E2E Layer



      class ConvE2E(Layer):
      def __init__(self,
      filters,
      kernel_size,
      strides=1,
      padding='valid',
      data_format=None,
      dilation_rate=1,
      activation=None,
      use_bias=True,
      kernel_initializer='glorot_uniform',
      bias_initializer='zeros',
      kernel_regularizer=None,
      bias_regularizer=None,
      activity_regularizer=None,
      kernel_constraint=None,
      bias_constraint=None,
      **kwargs):
      super(ConvE2E, self).__init__(**kwargs)
      self.rank = 2
      self.filters = filters
      self.kernel_size = kernel_size
      self.strides = conv_utils.normalize_tuple(strides, self.rank, 'strides')
      self.padding = conv_utils.normalize_padding(padding)
      self.data_format = K.common.normalize_data_format(data_format)
      self.dilation_rate = conv_utils.normalize_tuple(dilation_rate, self.rank,
      'dilation_rate')

      self.activation = activations.get(activation)
      self.use_bias = use_bias
      self.kernel_initializer = initializers.get(kernel_initializer)
      self.bias_initializer = initializers.get(bias_initializer)
      self.kernel_regularizer = regularizers.get(kernel_regularizer)
      self.bias_regularizer = regularizers.get(bias_regularizer)
      self.activity_regularizer = regularizers.get(activity_regularizer)
      self.kernel_constraint = constraints.get(kernel_constraint)
      self.bias_constraint = constraints.get(bias_constraint)
      self.input_spec = InputSpec(ndim=self.rank + 2)

      def build(self, input_shape):
      if self.data_format == 'channels_first':
      channel_axis = 1
      else:
      channel_axis = -1
      if input_shape[channel_axis] is None:
      raise ValueError('The channel dimension of the inputs '
      'should be defined. Found `None`.')
      self.input_dim = input_shape[channel_axis]
      kernel_shape = self.kernel_size + (self.input_dim, self.filters)

      # self.kernel = self.add_weight(shape=kernel_shape,
      # initializer=self.kernel_initializer,
      # name='kernel',
      # regularizer=self.kernel_regularizer,
      # constraint=self.kernel_constraint)
      if self.use_bias:
      self.bias = self.add_weight(shape=(self.filters,),
      initializer=self.bias_initializer,
      name='bias',
      regularizer=self.bias_regularizer,
      constraint=self.bias_constraint)
      else:
      self.bias = None
      # Set input spec.
      self.input_spec = InputSpec(ndim=self.rank + 2,
      axes={channel_axis: self.input_dim})
      self.built = True

      def call(self, inputs):
      kernel_h = self.kernel_size[0]
      kernel_w = self.kernel_size[1]

      kernel_size_h = conv_utils.normalize_tuple((kernel_h, 1), 2, 'kernel_size')
      kernel_shape_h = kernel_size_h + (self.input_dim, self.filters)
      kernel_dx1 = self.add_weight(shape=kernel_shape_h,
      initializer=self.kernel_initializer,
      name='kernel',
      regularizer=self.kernel_regularizer,
      constraint=self.kernel_constraint)

      kernel_size_w = conv_utils.normalize_tuple((1, kernel_w), 2, 'kernel_size')
      kernel_shape_w = kernel_size_w + (self.input_dim, self.filters)
      kernel_1xd = self.add_weight(shape=kernel_shape_w,
      initializer=self.kernel_initializer,
      name='kernel',
      regularizer=self.kernel_regularizer,
      constraint=self.kernel_constraint)

      outputs_dx1 = K.conv2d(inputs, kernel_dx1,strides=self.strides,
      padding=self.padding, data_format=self.data_format,
      dilation_rate=self.dilation_rate)
      outputs_dx1_dxd = K.repeat_elements(outputs_dx1, kernel_w, 1)

      outputs_1xd = K.conv2d(inputs, kernel_1xd, strides=self.strides,
      padding=self.padding, data_format=self.data_format,
      dilation_rate=self.dilation_rate)
      outputs_1xd_dxd = K.repeat_elements(outputs_1xd, kernel_h, 2)

      outputs = Add()([outputs_dx1_dxd, outputs_1xd_dxd])

      if self.use_bias:
      outputs = K.bias_add(
      outputs,
      self.bias,
      data_format=self.data_format)

      if self.activation is not None:
      return self.activation(outputs)

      return outputs

      def compute_output_shape(self, input_shape):
      if self.data_format == 'channels_last':
      output_shape = (input_shape) + (self.filters,)
      return output_shape
      if self.data_format == 'channels_first':
      output_shape = (input_shape[0], self.filters) + (input_shape[1:])
      return output_shape

      def get_config(self):
      config = {
      'rank': self.rank,
      'filters': self.filters,
      'kernel_size': self.kernel_size,
      'strides': self.strides,
      'padding': self.padding,
      'data_format': self.data_format,
      'dilation_rate': self.dilation_rate,
      'activation': activations.serialize(self.activation),
      'use_bias': self.use_bias,
      'kernel_initializer': initializers.serialize(self.kernel_initializer),
      'bias_initializer': initializers.serialize(self.bias_initializer),
      'kernel_regularizer': regularizers.serialize(self.kernel_regularizer),
      'bias_regularizer': regularizers.serialize(self.bias_regularizer),
      'activity_regularizer':
      regularizers.serialize(self.activity_regularizer),
      'kernel_constraint': constraints.serialize(self.kernel_constraint),
      'bias_constraint': constraints.serialize(self.bias_constraint)
      }
      base_config = super(ConvE2E, self).get_config()
      return dict(list(base_config.items()) + list(config.items()))


      E2N Layer



      class ConvE2N(Layer):
      def __init__(self,
      filters,
      kernel_size,
      strides=1,
      padding='valid',
      data_format=None,
      dilation_rate=1,
      activation=None,
      use_bias=True,
      kernel_initializer='glorot_uniform',
      bias_initializer='zeros',
      kernel_regularizer=None,
      bias_regularizer=None,
      activity_regularizer=None,
      kernel_constraint=None,
      bias_constraint=None,
      **kwargs):
      super(ConvE2N, self).__init__(**kwargs)
      self.rank = 2
      self.filters = filters
      self.kernel_size = kernel_size
      self.strides = conv_utils.normalize_tuple(strides, self.rank, 'strides')
      self.padding = conv_utils.normalize_padding(padding)
      self.data_format = K.common.normalize_data_format(data_format)
      self.dilation_rate = conv_utils.normalize_tuple(dilation_rate, self.rank,
      'dilation_rate')

      self.activation = activations.get(activation)
      self.use_bias = use_bias
      self.kernel_initializer = initializers.get(kernel_initializer)
      self.bias_initializer = initializers.get(bias_initializer)
      self.kernel_regularizer = regularizers.get(kernel_regularizer)
      self.bias_regularizer = regularizers.get(bias_regularizer)
      self.activity_regularizer = regularizers.get(activity_regularizer)
      self.kernel_constraint = constraints.get(kernel_constraint)
      self.bias_constraint = constraints.get(bias_constraint)
      self.input_spec = InputSpec(ndim=self.rank + 2)

      def build(self, input_shape):
      if self.data_format == 'channels_first':
      channel_axis = 1
      else:
      channel_axis = -1
      if input_shape[channel_axis] is None:
      raise ValueError('The channel dimension of the inputs '
      'should be defined. Found `None`.')
      self.input_dim = input_shape[channel_axis]
      kernel_shape = self.kernel_size + (self.input_dim, self.filters)

      # self.kernel = self.add_weight(shape=kernel_shape,
      # initializer=self.kernel_initializer,
      # name='kernel',
      # regularizer=self.kernel_regularizer,
      # constraint=self.kernel_constraint)
      if self.use_bias:
      self.bias = self.add_weight(shape=(self.filters,),
      initializer=self.bias_initializer,
      name='bias',
      regularizer=self.bias_regularizer,
      constraint=self.bias_constraint)
      else:
      self.bias = None
      # Set input spec.
      self.input_spec = InputSpec(ndim=self.rank + 2,
      axes={channel_axis: self.input_dim})
      self.built = True

      def call(self, inputs):
      kernel_h = self.kernel_size[0]
      kernel_w = self.kernel_size[1]

      kernel_size_w = conv_utils.normalize_tuple((1, kernel_w), 2, 'kernel_size')
      kernel_shape_w = kernel_size_w + (self.input_dim, self.filters)
      kernel_1xd = self.add_weight(shape=kernel_shape_w,
      initializer=self.kernel_initializer,
      name='kernel',
      regularizer=self.kernel_regularizer,
      constraint=self.kernel_constraint)

      outputs_1xd = K.conv2d(inputs, kernel_1xd, strides=self.strides,
      padding=self.padding, data_format=self.data_format,
      dilation_rate=self.dilation_rate)
      outputs = outputs_1xd

      if self.use_bias:
      outputs = K.bias_add(
      outputs,
      self.bias,
      data_format=self.data_format)

      if self.activation is not None:
      return self.activation(outputs)

      return outputs

      def compute_output_shape(self, input_shape):
      if self.data_format == 'channels_last':
      output_shape = (input_shape[0], self.kernel_size[0], 1, input_shape[-2], self.filters)
      return output_shape
      if self.data_format == 'channels_first':
      output_shape = input_shape[0:2] + (self.kernel_size[0], 1, self.filters)
      return output_shape

      def get_config(self):
      config = {
      'rank': self.rank,
      'filters': self.filters,
      'kernel_size': self.kernel_size,
      'strides': self.strides,
      'padding': self.padding,
      'data_format': self.data_format,
      'dilation_rate': self.dilation_rate,
      'activation': activations.serialize(self.activation),
      'use_bias': self.use_bias,
      'kernel_initializer': initializers.serialize(self.kernel_initializer),
      'bias_initializer': initializers.serialize(self.bias_initializer),
      'kernel_regularizer': regularizers.serialize(self.kernel_regularizer),
      'bias_regularizer': regularizers.serialize(self.bias_regularizer),
      'activity_regularizer':
      regularizers.serialize(self.activity_regularizer),
      'kernel_constraint': constraints.serialize(self.kernel_constraint),
      'bias_constraint': constraints.serialize(self.bias_constraint)
      }
      base_config = super(ConvE2N, self).get_config()
      return dict(list(base_config.items()) + list(config.items()))






      python tensorflow machine-learning keras customization






      share|improve this question













      share|improve this question











      share|improve this question




      share|improve this question










      asked Nov 22 '18 at 14:28









      ANSantanaANSantana

      112




      112
























          0






          active

          oldest

          votes












          Your Answer






          StackExchange.ifUsing("editor", function () {
          StackExchange.using("externalEditor", function () {
          StackExchange.using("snippets", function () {
          StackExchange.snippets.init();
          });
          });
          }, "code-snippets");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "1"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53433119%2fcustom-conv2d-in-keras-valueerror-an-operation-has-none-for-gradient-with-sel%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          0






          active

          oldest

          votes








          0






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes
















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Stack Overflow!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53433119%2fcustom-conv2d-in-keras-valueerror-an-operation-has-none-for-gradient-with-sel%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Guess what letter conforming each word

          Run scheduled task as local user group (not BUILTIN)

          Port of Spain