Run another model (autoencoder) as part of the preprocessing using tf.data.Dataset
I'm trying to train a classifier and, as part of the classifier's preprocessing pipeline, I want to run yet another model which is an autoencoder.
I'm using tf.data.Dataset
to preprocess my data and compute the classifier's input. My script is equivalent to this
def patch_fn(image, label):
x = keras.layers.Input(shape=(1,))
y = keras.layers.Dense(10)(x)
model = keras.models.Model(x, y) # This is the autoencoder
encoded_y = model.predict(image, steps=1)
return encoded_y, label
def input_fn():
dataset = tf.data.TFRecordDataset(...)
dataset = dataset.map(patch_fn)
dataset = ...
def main():
classifier = ...
classifier.fit(input_fn(...), ...)
But when I run it, I get
tensorflow.python.framework.errors_impl.InvalidArgumentError: You must feed a value for placeholder tensor 'dense/MatMul/ReadVariableOp/Placeholder' with dtype resource
[[{{node dense/MatMul/ReadVariableOp/Placeholder}} = Placeholder[dtype=DT_RESOURCE, shape=, _device="/job:localhost/replica:0/task:0/device:GPU:0"]()]]
[[{{node dense/BiasAdd/_3}} = _Recv[client_terminated=false, recv_device="/job:localhost/replica:0/task:0/device:CPU:0", send_device="/job:localhost/replica:0/task:0/device:GPU:0", send_device_incarnation=1, tensor_name="edge_13_dense/BiasAdd", tensor_type=DT_FLOAT, _device="/job:localhost/replica:0/task:0/device:CPU:0"]()]]
Anyone care to point me in the right direction? Thank you.
tensorflow keras tensorflow-datasets
add a comment |
I'm trying to train a classifier and, as part of the classifier's preprocessing pipeline, I want to run yet another model which is an autoencoder.
I'm using tf.data.Dataset
to preprocess my data and compute the classifier's input. My script is equivalent to this
def patch_fn(image, label):
x = keras.layers.Input(shape=(1,))
y = keras.layers.Dense(10)(x)
model = keras.models.Model(x, y) # This is the autoencoder
encoded_y = model.predict(image, steps=1)
return encoded_y, label
def input_fn():
dataset = tf.data.TFRecordDataset(...)
dataset = dataset.map(patch_fn)
dataset = ...
def main():
classifier = ...
classifier.fit(input_fn(...), ...)
But when I run it, I get
tensorflow.python.framework.errors_impl.InvalidArgumentError: You must feed a value for placeholder tensor 'dense/MatMul/ReadVariableOp/Placeholder' with dtype resource
[[{{node dense/MatMul/ReadVariableOp/Placeholder}} = Placeholder[dtype=DT_RESOURCE, shape=, _device="/job:localhost/replica:0/task:0/device:GPU:0"]()]]
[[{{node dense/BiasAdd/_3}} = _Recv[client_terminated=false, recv_device="/job:localhost/replica:0/task:0/device:CPU:0", send_device="/job:localhost/replica:0/task:0/device:GPU:0", send_device_incarnation=1, tensor_name="edge_13_dense/BiasAdd", tensor_type=DT_FLOAT, _device="/job:localhost/replica:0/task:0/device:CPU:0"]()]]
Anyone care to point me in the right direction? Thank you.
tensorflow keras tensorflow-datasets
add a comment |
I'm trying to train a classifier and, as part of the classifier's preprocessing pipeline, I want to run yet another model which is an autoencoder.
I'm using tf.data.Dataset
to preprocess my data and compute the classifier's input. My script is equivalent to this
def patch_fn(image, label):
x = keras.layers.Input(shape=(1,))
y = keras.layers.Dense(10)(x)
model = keras.models.Model(x, y) # This is the autoencoder
encoded_y = model.predict(image, steps=1)
return encoded_y, label
def input_fn():
dataset = tf.data.TFRecordDataset(...)
dataset = dataset.map(patch_fn)
dataset = ...
def main():
classifier = ...
classifier.fit(input_fn(...), ...)
But when I run it, I get
tensorflow.python.framework.errors_impl.InvalidArgumentError: You must feed a value for placeholder tensor 'dense/MatMul/ReadVariableOp/Placeholder' with dtype resource
[[{{node dense/MatMul/ReadVariableOp/Placeholder}} = Placeholder[dtype=DT_RESOURCE, shape=, _device="/job:localhost/replica:0/task:0/device:GPU:0"]()]]
[[{{node dense/BiasAdd/_3}} = _Recv[client_terminated=false, recv_device="/job:localhost/replica:0/task:0/device:CPU:0", send_device="/job:localhost/replica:0/task:0/device:GPU:0", send_device_incarnation=1, tensor_name="edge_13_dense/BiasAdd", tensor_type=DT_FLOAT, _device="/job:localhost/replica:0/task:0/device:CPU:0"]()]]
Anyone care to point me in the right direction? Thank you.
tensorflow keras tensorflow-datasets
I'm trying to train a classifier and, as part of the classifier's preprocessing pipeline, I want to run yet another model which is an autoencoder.
I'm using tf.data.Dataset
to preprocess my data and compute the classifier's input. My script is equivalent to this
def patch_fn(image, label):
x = keras.layers.Input(shape=(1,))
y = keras.layers.Dense(10)(x)
model = keras.models.Model(x, y) # This is the autoencoder
encoded_y = model.predict(image, steps=1)
return encoded_y, label
def input_fn():
dataset = tf.data.TFRecordDataset(...)
dataset = dataset.map(patch_fn)
dataset = ...
def main():
classifier = ...
classifier.fit(input_fn(...), ...)
But when I run it, I get
tensorflow.python.framework.errors_impl.InvalidArgumentError: You must feed a value for placeholder tensor 'dense/MatMul/ReadVariableOp/Placeholder' with dtype resource
[[{{node dense/MatMul/ReadVariableOp/Placeholder}} = Placeholder[dtype=DT_RESOURCE, shape=, _device="/job:localhost/replica:0/task:0/device:GPU:0"]()]]
[[{{node dense/BiasAdd/_3}} = _Recv[client_terminated=false, recv_device="/job:localhost/replica:0/task:0/device:CPU:0", send_device="/job:localhost/replica:0/task:0/device:GPU:0", send_device_incarnation=1, tensor_name="edge_13_dense/BiasAdd", tensor_type=DT_FLOAT, _device="/job:localhost/replica:0/task:0/device:CPU:0"]()]]
Anyone care to point me in the right direction? Thank you.
tensorflow keras tensorflow-datasets
tensorflow keras tensorflow-datasets
asked Nov 13 at 14:51
Vitor Pereira
3216
3216
add a comment |
add a comment |
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
StackExchange.using("externalEditor", function () {
StackExchange.using("snippets", function () {
StackExchange.snippets.init();
});
});
}, "code-snippets");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "1"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53283653%2frun-another-model-autoencoder-as-part-of-the-preprocessing-using-tf-data-datas%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
active
oldest
votes
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Stack Overflow!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53283653%2frun-another-model-autoencoder-as-part-of-the-preprocessing-using-tf-data-datas%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown