Nvidia docker tensorflow fails with CUDA_ERROR_NOT_SUPPORTED: operation not supported
up vote
0
down vote
favorite
I have a vm running on a server with a Tesla P4.
I have jenkins running, and would like to use nvidia-docker too.
I get the following error message when I run this command:
15:07:36 + docker run --runtime=nvidia --rm tensorflow/tensorflow:latest-gpu python -c import tensorflow as tf; tf.enable_eager_execution(); print(tf.reduce_sum(tf.random_normal([1000, 1000])))
15:07:38 2018-11-12 14:07:38.940584: I tensorflow/core/platform/cpu_feature_guard.cc:141] Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX2 FMA
15:07:39 Traceback (most recent call last):
15:07:39 File "<string>", line 1, in <module>
15:07:39 File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/ops/random_ops.py", line 73, in random_normal
15:07:39 shape_tensor = _ShapeTensor(shape)
15:07:39 File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/ops/random_ops.py", line 44, in _ShapeTensor
15:07:39 return ops.convert_to_tensor(shape, dtype=dtype, name="shape")
15:07:39 File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/framework/ops.py", line 1050, in convert_to_tensor
15:07:39 as_ref=False)
15:07:39 File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/framework/ops.py", line 1146, in internal_convert_to_tensor
15:07:39 ret = conversion_func(value, dtype=dtype, name=name, as_ref=as_ref)
15:07:39 File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/framework/constant_op.py", line 229, in _constant_tensor_conversion_function
15:07:39 return constant(v, dtype=dtype, name=name)
15:07:39 File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/framework/constant_op.py", line 179, in constant
15:07:39 t = convert_to_eager_tensor(value, ctx, dtype)
15:07:39 File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/framework/constant_op.py", line 99, in convert_to_eager_tensor
15:07:39 handle = ctx._handle # pylint: disable=protected-access
15:07:39 File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/eager/context.py", line 319, in _handle
15:07:39 self._initialize_handle_and_devices()
15:07:39 File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/eager/context.py", line 267, in _initialize_handle_and_devices
15:07:39 self._context_handle = pywrap_tensorflow.TFE_NewContext(opts)
15:07:39 tensorflow.python.framework.errors_impl.InternalError: failed initializing StreamExecutor for CUDA device ordinal 0: Internal: failed call to cuDevicePrimaryCtxRetain: CUDA_ERROR_NOT_SUPPORTED: operation not supported
I have no idea where to look or what to do, the videocard should be available.
15:16:20 + docker run --runtime=nvidia --rm nvidia/cuda nvidia-smi
15:16:22 Mon Nov 12 14:16:22 2018
15:16:22 +-----------------------------------------------------------------------------+
15:16:22 | NVIDIA-SMI 410.73 Driver Version: 410.73 CUDA Version: 10.0 |
15:16:22 |-------------------------------+----------------------+----------------------+
15:16:22 | GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
15:16:22 | Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
15:16:22 |===============================+======================+======================|
15:16:22 | 0 Tesla P4 Off | 00000000:00:06.0 Off | N/A |
15:16:22 | N/A 47C P0 24W / 75W | 0MiB / 7611MiB | 0% Default |
15:16:22 +-------------------------------+----------------------+----------------------+
15:16:22
15:16:22 +-----------------------------------------------------------------------------+
15:16:22 | Processes: GPU Memory |
15:16:22 | GPU PID Type Process name Usage |
15:16:22 |=============================================================================|
15:16:22 | No running processes found |
15:16:22 +-----------------------------------------------------------------------------+
What could cause this issue?
python docker tensorflow jenkins nvidia-docker
add a comment |
up vote
0
down vote
favorite
I have a vm running on a server with a Tesla P4.
I have jenkins running, and would like to use nvidia-docker too.
I get the following error message when I run this command:
15:07:36 + docker run --runtime=nvidia --rm tensorflow/tensorflow:latest-gpu python -c import tensorflow as tf; tf.enable_eager_execution(); print(tf.reduce_sum(tf.random_normal([1000, 1000])))
15:07:38 2018-11-12 14:07:38.940584: I tensorflow/core/platform/cpu_feature_guard.cc:141] Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX2 FMA
15:07:39 Traceback (most recent call last):
15:07:39 File "<string>", line 1, in <module>
15:07:39 File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/ops/random_ops.py", line 73, in random_normal
15:07:39 shape_tensor = _ShapeTensor(shape)
15:07:39 File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/ops/random_ops.py", line 44, in _ShapeTensor
15:07:39 return ops.convert_to_tensor(shape, dtype=dtype, name="shape")
15:07:39 File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/framework/ops.py", line 1050, in convert_to_tensor
15:07:39 as_ref=False)
15:07:39 File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/framework/ops.py", line 1146, in internal_convert_to_tensor
15:07:39 ret = conversion_func(value, dtype=dtype, name=name, as_ref=as_ref)
15:07:39 File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/framework/constant_op.py", line 229, in _constant_tensor_conversion_function
15:07:39 return constant(v, dtype=dtype, name=name)
15:07:39 File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/framework/constant_op.py", line 179, in constant
15:07:39 t = convert_to_eager_tensor(value, ctx, dtype)
15:07:39 File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/framework/constant_op.py", line 99, in convert_to_eager_tensor
15:07:39 handle = ctx._handle # pylint: disable=protected-access
15:07:39 File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/eager/context.py", line 319, in _handle
15:07:39 self._initialize_handle_and_devices()
15:07:39 File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/eager/context.py", line 267, in _initialize_handle_and_devices
15:07:39 self._context_handle = pywrap_tensorflow.TFE_NewContext(opts)
15:07:39 tensorflow.python.framework.errors_impl.InternalError: failed initializing StreamExecutor for CUDA device ordinal 0: Internal: failed call to cuDevicePrimaryCtxRetain: CUDA_ERROR_NOT_SUPPORTED: operation not supported
I have no idea where to look or what to do, the videocard should be available.
15:16:20 + docker run --runtime=nvidia --rm nvidia/cuda nvidia-smi
15:16:22 Mon Nov 12 14:16:22 2018
15:16:22 +-----------------------------------------------------------------------------+
15:16:22 | NVIDIA-SMI 410.73 Driver Version: 410.73 CUDA Version: 10.0 |
15:16:22 |-------------------------------+----------------------+----------------------+
15:16:22 | GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
15:16:22 | Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
15:16:22 |===============================+======================+======================|
15:16:22 | 0 Tesla P4 Off | 00000000:00:06.0 Off | N/A |
15:16:22 | N/A 47C P0 24W / 75W | 0MiB / 7611MiB | 0% Default |
15:16:22 +-------------------------------+----------------------+----------------------+
15:16:22
15:16:22 +-----------------------------------------------------------------------------+
15:16:22 | Processes: GPU Memory |
15:16:22 | GPU PID Type Process name Usage |
15:16:22 |=============================================================================|
15:16:22 | No running processes found |
15:16:22 +-----------------------------------------------------------------------------+
What could cause this issue?
python docker tensorflow jenkins nvidia-docker
add a comment |
up vote
0
down vote
favorite
up vote
0
down vote
favorite
I have a vm running on a server with a Tesla P4.
I have jenkins running, and would like to use nvidia-docker too.
I get the following error message when I run this command:
15:07:36 + docker run --runtime=nvidia --rm tensorflow/tensorflow:latest-gpu python -c import tensorflow as tf; tf.enable_eager_execution(); print(tf.reduce_sum(tf.random_normal([1000, 1000])))
15:07:38 2018-11-12 14:07:38.940584: I tensorflow/core/platform/cpu_feature_guard.cc:141] Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX2 FMA
15:07:39 Traceback (most recent call last):
15:07:39 File "<string>", line 1, in <module>
15:07:39 File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/ops/random_ops.py", line 73, in random_normal
15:07:39 shape_tensor = _ShapeTensor(shape)
15:07:39 File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/ops/random_ops.py", line 44, in _ShapeTensor
15:07:39 return ops.convert_to_tensor(shape, dtype=dtype, name="shape")
15:07:39 File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/framework/ops.py", line 1050, in convert_to_tensor
15:07:39 as_ref=False)
15:07:39 File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/framework/ops.py", line 1146, in internal_convert_to_tensor
15:07:39 ret = conversion_func(value, dtype=dtype, name=name, as_ref=as_ref)
15:07:39 File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/framework/constant_op.py", line 229, in _constant_tensor_conversion_function
15:07:39 return constant(v, dtype=dtype, name=name)
15:07:39 File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/framework/constant_op.py", line 179, in constant
15:07:39 t = convert_to_eager_tensor(value, ctx, dtype)
15:07:39 File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/framework/constant_op.py", line 99, in convert_to_eager_tensor
15:07:39 handle = ctx._handle # pylint: disable=protected-access
15:07:39 File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/eager/context.py", line 319, in _handle
15:07:39 self._initialize_handle_and_devices()
15:07:39 File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/eager/context.py", line 267, in _initialize_handle_and_devices
15:07:39 self._context_handle = pywrap_tensorflow.TFE_NewContext(opts)
15:07:39 tensorflow.python.framework.errors_impl.InternalError: failed initializing StreamExecutor for CUDA device ordinal 0: Internal: failed call to cuDevicePrimaryCtxRetain: CUDA_ERROR_NOT_SUPPORTED: operation not supported
I have no idea where to look or what to do, the videocard should be available.
15:16:20 + docker run --runtime=nvidia --rm nvidia/cuda nvidia-smi
15:16:22 Mon Nov 12 14:16:22 2018
15:16:22 +-----------------------------------------------------------------------------+
15:16:22 | NVIDIA-SMI 410.73 Driver Version: 410.73 CUDA Version: 10.0 |
15:16:22 |-------------------------------+----------------------+----------------------+
15:16:22 | GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
15:16:22 | Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
15:16:22 |===============================+======================+======================|
15:16:22 | 0 Tesla P4 Off | 00000000:00:06.0 Off | N/A |
15:16:22 | N/A 47C P0 24W / 75W | 0MiB / 7611MiB | 0% Default |
15:16:22 +-------------------------------+----------------------+----------------------+
15:16:22
15:16:22 +-----------------------------------------------------------------------------+
15:16:22 | Processes: GPU Memory |
15:16:22 | GPU PID Type Process name Usage |
15:16:22 |=============================================================================|
15:16:22 | No running processes found |
15:16:22 +-----------------------------------------------------------------------------+
What could cause this issue?
python docker tensorflow jenkins nvidia-docker
I have a vm running on a server with a Tesla P4.
I have jenkins running, and would like to use nvidia-docker too.
I get the following error message when I run this command:
15:07:36 + docker run --runtime=nvidia --rm tensorflow/tensorflow:latest-gpu python -c import tensorflow as tf; tf.enable_eager_execution(); print(tf.reduce_sum(tf.random_normal([1000, 1000])))
15:07:38 2018-11-12 14:07:38.940584: I tensorflow/core/platform/cpu_feature_guard.cc:141] Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX2 FMA
15:07:39 Traceback (most recent call last):
15:07:39 File "<string>", line 1, in <module>
15:07:39 File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/ops/random_ops.py", line 73, in random_normal
15:07:39 shape_tensor = _ShapeTensor(shape)
15:07:39 File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/ops/random_ops.py", line 44, in _ShapeTensor
15:07:39 return ops.convert_to_tensor(shape, dtype=dtype, name="shape")
15:07:39 File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/framework/ops.py", line 1050, in convert_to_tensor
15:07:39 as_ref=False)
15:07:39 File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/framework/ops.py", line 1146, in internal_convert_to_tensor
15:07:39 ret = conversion_func(value, dtype=dtype, name=name, as_ref=as_ref)
15:07:39 File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/framework/constant_op.py", line 229, in _constant_tensor_conversion_function
15:07:39 return constant(v, dtype=dtype, name=name)
15:07:39 File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/framework/constant_op.py", line 179, in constant
15:07:39 t = convert_to_eager_tensor(value, ctx, dtype)
15:07:39 File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/framework/constant_op.py", line 99, in convert_to_eager_tensor
15:07:39 handle = ctx._handle # pylint: disable=protected-access
15:07:39 File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/eager/context.py", line 319, in _handle
15:07:39 self._initialize_handle_and_devices()
15:07:39 File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/eager/context.py", line 267, in _initialize_handle_and_devices
15:07:39 self._context_handle = pywrap_tensorflow.TFE_NewContext(opts)
15:07:39 tensorflow.python.framework.errors_impl.InternalError: failed initializing StreamExecutor for CUDA device ordinal 0: Internal: failed call to cuDevicePrimaryCtxRetain: CUDA_ERROR_NOT_SUPPORTED: operation not supported
I have no idea where to look or what to do, the videocard should be available.
15:16:20 + docker run --runtime=nvidia --rm nvidia/cuda nvidia-smi
15:16:22 Mon Nov 12 14:16:22 2018
15:16:22 +-----------------------------------------------------------------------------+
15:16:22 | NVIDIA-SMI 410.73 Driver Version: 410.73 CUDA Version: 10.0 |
15:16:22 |-------------------------------+----------------------+----------------------+
15:16:22 | GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
15:16:22 | Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
15:16:22 |===============================+======================+======================|
15:16:22 | 0 Tesla P4 Off | 00000000:00:06.0 Off | N/A |
15:16:22 | N/A 47C P0 24W / 75W | 0MiB / 7611MiB | 0% Default |
15:16:22 +-------------------------------+----------------------+----------------------+
15:16:22
15:16:22 +-----------------------------------------------------------------------------+
15:16:22 | Processes: GPU Memory |
15:16:22 | GPU PID Type Process name Usage |
15:16:22 |=============================================================================|
15:16:22 | No running processes found |
15:16:22 +-----------------------------------------------------------------------------+
What could cause this issue?
python docker tensorflow jenkins nvidia-docker
python docker tensorflow jenkins nvidia-docker
asked Nov 12 at 14:20
Tamás
104
104
add a comment |
add a comment |
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
StackExchange.using("externalEditor", function () {
StackExchange.using("snippets", function () {
StackExchange.snippets.init();
});
});
}, "code-snippets");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "1"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53264119%2fnvidia-docker-tensorflow-fails-with-cuda-error-not-supported-operation-not-supp%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
active
oldest
votes
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Stack Overflow!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53264119%2fnvidia-docker-tensorflow-fails-with-cuda-error-not-supported-operation-not-supp%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown