Nvidia docker tensorflow fails with CUDA_ERROR_NOT_SUPPORTED: operation not supported











up vote
0
down vote

favorite












I have a vm running on a server with a Tesla P4.
I have jenkins running, and would like to use nvidia-docker too.



I get the following error message when I run this command:



15:07:36 + docker run --runtime=nvidia --rm tensorflow/tensorflow:latest-gpu python -c import tensorflow as tf; tf.enable_eager_execution(); print(tf.reduce_sum(tf.random_normal([1000, 1000])))


15:07:38 2018-11-12 14:07:38.940584: I tensorflow/core/platform/cpu_feature_guard.cc:141] Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX2 FMA
15:07:39 Traceback (most recent call last):
15:07:39 File "<string>", line 1, in <module>
15:07:39 File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/ops/random_ops.py", line 73, in random_normal
15:07:39 shape_tensor = _ShapeTensor(shape)
15:07:39 File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/ops/random_ops.py", line 44, in _ShapeTensor
15:07:39 return ops.convert_to_tensor(shape, dtype=dtype, name="shape")
15:07:39 File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/framework/ops.py", line 1050, in convert_to_tensor
15:07:39 as_ref=False)
15:07:39 File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/framework/ops.py", line 1146, in internal_convert_to_tensor
15:07:39 ret = conversion_func(value, dtype=dtype, name=name, as_ref=as_ref)
15:07:39 File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/framework/constant_op.py", line 229, in _constant_tensor_conversion_function
15:07:39 return constant(v, dtype=dtype, name=name)
15:07:39 File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/framework/constant_op.py", line 179, in constant
15:07:39 t = convert_to_eager_tensor(value, ctx, dtype)
15:07:39 File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/framework/constant_op.py", line 99, in convert_to_eager_tensor
15:07:39 handle = ctx._handle # pylint: disable=protected-access
15:07:39 File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/eager/context.py", line 319, in _handle
15:07:39 self._initialize_handle_and_devices()
15:07:39 File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/eager/context.py", line 267, in _initialize_handle_and_devices
15:07:39 self._context_handle = pywrap_tensorflow.TFE_NewContext(opts)
15:07:39 tensorflow.python.framework.errors_impl.InternalError: failed initializing StreamExecutor for CUDA device ordinal 0: Internal: failed call to cuDevicePrimaryCtxRetain: CUDA_ERROR_NOT_SUPPORTED: operation not supported


I have no idea where to look or what to do, the videocard should be available.



15:16:20 + docker run --runtime=nvidia --rm nvidia/cuda nvidia-smi
15:16:22 Mon Nov 12 14:16:22 2018
15:16:22 +-----------------------------------------------------------------------------+
15:16:22 | NVIDIA-SMI 410.73 Driver Version: 410.73 CUDA Version: 10.0 |
15:16:22 |-------------------------------+----------------------+----------------------+
15:16:22 | GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
15:16:22 | Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
15:16:22 |===============================+======================+======================|
15:16:22 | 0 Tesla P4 Off | 00000000:00:06.0 Off | N/A |
15:16:22 | N/A 47C P0 24W / 75W | 0MiB / 7611MiB | 0% Default |
15:16:22 +-------------------------------+----------------------+----------------------+
15:16:22
15:16:22 +-----------------------------------------------------------------------------+
15:16:22 | Processes: GPU Memory |
15:16:22 | GPU PID Type Process name Usage |
15:16:22 |=============================================================================|
15:16:22 | No running processes found |
15:16:22 +-----------------------------------------------------------------------------+


What could cause this issue?










share|improve this question


























    up vote
    0
    down vote

    favorite












    I have a vm running on a server with a Tesla P4.
    I have jenkins running, and would like to use nvidia-docker too.



    I get the following error message when I run this command:



    15:07:36 + docker run --runtime=nvidia --rm tensorflow/tensorflow:latest-gpu python -c import tensorflow as tf; tf.enable_eager_execution(); print(tf.reduce_sum(tf.random_normal([1000, 1000])))


    15:07:38 2018-11-12 14:07:38.940584: I tensorflow/core/platform/cpu_feature_guard.cc:141] Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX2 FMA
    15:07:39 Traceback (most recent call last):
    15:07:39 File "<string>", line 1, in <module>
    15:07:39 File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/ops/random_ops.py", line 73, in random_normal
    15:07:39 shape_tensor = _ShapeTensor(shape)
    15:07:39 File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/ops/random_ops.py", line 44, in _ShapeTensor
    15:07:39 return ops.convert_to_tensor(shape, dtype=dtype, name="shape")
    15:07:39 File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/framework/ops.py", line 1050, in convert_to_tensor
    15:07:39 as_ref=False)
    15:07:39 File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/framework/ops.py", line 1146, in internal_convert_to_tensor
    15:07:39 ret = conversion_func(value, dtype=dtype, name=name, as_ref=as_ref)
    15:07:39 File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/framework/constant_op.py", line 229, in _constant_tensor_conversion_function
    15:07:39 return constant(v, dtype=dtype, name=name)
    15:07:39 File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/framework/constant_op.py", line 179, in constant
    15:07:39 t = convert_to_eager_tensor(value, ctx, dtype)
    15:07:39 File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/framework/constant_op.py", line 99, in convert_to_eager_tensor
    15:07:39 handle = ctx._handle # pylint: disable=protected-access
    15:07:39 File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/eager/context.py", line 319, in _handle
    15:07:39 self._initialize_handle_and_devices()
    15:07:39 File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/eager/context.py", line 267, in _initialize_handle_and_devices
    15:07:39 self._context_handle = pywrap_tensorflow.TFE_NewContext(opts)
    15:07:39 tensorflow.python.framework.errors_impl.InternalError: failed initializing StreamExecutor for CUDA device ordinal 0: Internal: failed call to cuDevicePrimaryCtxRetain: CUDA_ERROR_NOT_SUPPORTED: operation not supported


    I have no idea where to look or what to do, the videocard should be available.



    15:16:20 + docker run --runtime=nvidia --rm nvidia/cuda nvidia-smi
    15:16:22 Mon Nov 12 14:16:22 2018
    15:16:22 +-----------------------------------------------------------------------------+
    15:16:22 | NVIDIA-SMI 410.73 Driver Version: 410.73 CUDA Version: 10.0 |
    15:16:22 |-------------------------------+----------------------+----------------------+
    15:16:22 | GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
    15:16:22 | Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
    15:16:22 |===============================+======================+======================|
    15:16:22 | 0 Tesla P4 Off | 00000000:00:06.0 Off | N/A |
    15:16:22 | N/A 47C P0 24W / 75W | 0MiB / 7611MiB | 0% Default |
    15:16:22 +-------------------------------+----------------------+----------------------+
    15:16:22
    15:16:22 +-----------------------------------------------------------------------------+
    15:16:22 | Processes: GPU Memory |
    15:16:22 | GPU PID Type Process name Usage |
    15:16:22 |=============================================================================|
    15:16:22 | No running processes found |
    15:16:22 +-----------------------------------------------------------------------------+


    What could cause this issue?










    share|improve this question
























      up vote
      0
      down vote

      favorite









      up vote
      0
      down vote

      favorite











      I have a vm running on a server with a Tesla P4.
      I have jenkins running, and would like to use nvidia-docker too.



      I get the following error message when I run this command:



      15:07:36 + docker run --runtime=nvidia --rm tensorflow/tensorflow:latest-gpu python -c import tensorflow as tf; tf.enable_eager_execution(); print(tf.reduce_sum(tf.random_normal([1000, 1000])))


      15:07:38 2018-11-12 14:07:38.940584: I tensorflow/core/platform/cpu_feature_guard.cc:141] Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX2 FMA
      15:07:39 Traceback (most recent call last):
      15:07:39 File "<string>", line 1, in <module>
      15:07:39 File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/ops/random_ops.py", line 73, in random_normal
      15:07:39 shape_tensor = _ShapeTensor(shape)
      15:07:39 File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/ops/random_ops.py", line 44, in _ShapeTensor
      15:07:39 return ops.convert_to_tensor(shape, dtype=dtype, name="shape")
      15:07:39 File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/framework/ops.py", line 1050, in convert_to_tensor
      15:07:39 as_ref=False)
      15:07:39 File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/framework/ops.py", line 1146, in internal_convert_to_tensor
      15:07:39 ret = conversion_func(value, dtype=dtype, name=name, as_ref=as_ref)
      15:07:39 File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/framework/constant_op.py", line 229, in _constant_tensor_conversion_function
      15:07:39 return constant(v, dtype=dtype, name=name)
      15:07:39 File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/framework/constant_op.py", line 179, in constant
      15:07:39 t = convert_to_eager_tensor(value, ctx, dtype)
      15:07:39 File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/framework/constant_op.py", line 99, in convert_to_eager_tensor
      15:07:39 handle = ctx._handle # pylint: disable=protected-access
      15:07:39 File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/eager/context.py", line 319, in _handle
      15:07:39 self._initialize_handle_and_devices()
      15:07:39 File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/eager/context.py", line 267, in _initialize_handle_and_devices
      15:07:39 self._context_handle = pywrap_tensorflow.TFE_NewContext(opts)
      15:07:39 tensorflow.python.framework.errors_impl.InternalError: failed initializing StreamExecutor for CUDA device ordinal 0: Internal: failed call to cuDevicePrimaryCtxRetain: CUDA_ERROR_NOT_SUPPORTED: operation not supported


      I have no idea where to look or what to do, the videocard should be available.



      15:16:20 + docker run --runtime=nvidia --rm nvidia/cuda nvidia-smi
      15:16:22 Mon Nov 12 14:16:22 2018
      15:16:22 +-----------------------------------------------------------------------------+
      15:16:22 | NVIDIA-SMI 410.73 Driver Version: 410.73 CUDA Version: 10.0 |
      15:16:22 |-------------------------------+----------------------+----------------------+
      15:16:22 | GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
      15:16:22 | Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
      15:16:22 |===============================+======================+======================|
      15:16:22 | 0 Tesla P4 Off | 00000000:00:06.0 Off | N/A |
      15:16:22 | N/A 47C P0 24W / 75W | 0MiB / 7611MiB | 0% Default |
      15:16:22 +-------------------------------+----------------------+----------------------+
      15:16:22
      15:16:22 +-----------------------------------------------------------------------------+
      15:16:22 | Processes: GPU Memory |
      15:16:22 | GPU PID Type Process name Usage |
      15:16:22 |=============================================================================|
      15:16:22 | No running processes found |
      15:16:22 +-----------------------------------------------------------------------------+


      What could cause this issue?










      share|improve this question













      I have a vm running on a server with a Tesla P4.
      I have jenkins running, and would like to use nvidia-docker too.



      I get the following error message when I run this command:



      15:07:36 + docker run --runtime=nvidia --rm tensorflow/tensorflow:latest-gpu python -c import tensorflow as tf; tf.enable_eager_execution(); print(tf.reduce_sum(tf.random_normal([1000, 1000])))


      15:07:38 2018-11-12 14:07:38.940584: I tensorflow/core/platform/cpu_feature_guard.cc:141] Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX2 FMA
      15:07:39 Traceback (most recent call last):
      15:07:39 File "<string>", line 1, in <module>
      15:07:39 File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/ops/random_ops.py", line 73, in random_normal
      15:07:39 shape_tensor = _ShapeTensor(shape)
      15:07:39 File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/ops/random_ops.py", line 44, in _ShapeTensor
      15:07:39 return ops.convert_to_tensor(shape, dtype=dtype, name="shape")
      15:07:39 File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/framework/ops.py", line 1050, in convert_to_tensor
      15:07:39 as_ref=False)
      15:07:39 File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/framework/ops.py", line 1146, in internal_convert_to_tensor
      15:07:39 ret = conversion_func(value, dtype=dtype, name=name, as_ref=as_ref)
      15:07:39 File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/framework/constant_op.py", line 229, in _constant_tensor_conversion_function
      15:07:39 return constant(v, dtype=dtype, name=name)
      15:07:39 File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/framework/constant_op.py", line 179, in constant
      15:07:39 t = convert_to_eager_tensor(value, ctx, dtype)
      15:07:39 File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/framework/constant_op.py", line 99, in convert_to_eager_tensor
      15:07:39 handle = ctx._handle # pylint: disable=protected-access
      15:07:39 File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/eager/context.py", line 319, in _handle
      15:07:39 self._initialize_handle_and_devices()
      15:07:39 File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/eager/context.py", line 267, in _initialize_handle_and_devices
      15:07:39 self._context_handle = pywrap_tensorflow.TFE_NewContext(opts)
      15:07:39 tensorflow.python.framework.errors_impl.InternalError: failed initializing StreamExecutor for CUDA device ordinal 0: Internal: failed call to cuDevicePrimaryCtxRetain: CUDA_ERROR_NOT_SUPPORTED: operation not supported


      I have no idea where to look or what to do, the videocard should be available.



      15:16:20 + docker run --runtime=nvidia --rm nvidia/cuda nvidia-smi
      15:16:22 Mon Nov 12 14:16:22 2018
      15:16:22 +-----------------------------------------------------------------------------+
      15:16:22 | NVIDIA-SMI 410.73 Driver Version: 410.73 CUDA Version: 10.0 |
      15:16:22 |-------------------------------+----------------------+----------------------+
      15:16:22 | GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
      15:16:22 | Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
      15:16:22 |===============================+======================+======================|
      15:16:22 | 0 Tesla P4 Off | 00000000:00:06.0 Off | N/A |
      15:16:22 | N/A 47C P0 24W / 75W | 0MiB / 7611MiB | 0% Default |
      15:16:22 +-------------------------------+----------------------+----------------------+
      15:16:22
      15:16:22 +-----------------------------------------------------------------------------+
      15:16:22 | Processes: GPU Memory |
      15:16:22 | GPU PID Type Process name Usage |
      15:16:22 |=============================================================================|
      15:16:22 | No running processes found |
      15:16:22 +-----------------------------------------------------------------------------+


      What could cause this issue?







      python docker tensorflow jenkins nvidia-docker






      share|improve this question













      share|improve this question











      share|improve this question




      share|improve this question










      asked Nov 12 at 14:20









      Tamás

      104




      104





























          active

          oldest

          votes











          Your Answer






          StackExchange.ifUsing("editor", function () {
          StackExchange.using("externalEditor", function () {
          StackExchange.using("snippets", function () {
          StackExchange.snippets.init();
          });
          });
          }, "code-snippets");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "1"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53264119%2fnvidia-docker-tensorflow-fails-with-cuda-error-not-supported-operation-not-supp%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown






























          active

          oldest

          votes













          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes
















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Stack Overflow!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          To learn more, see our tips on writing great answers.





          Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


          Please pay close attention to the following guidance:


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53264119%2fnvidia-docker-tensorflow-fails-with-cuda-error-not-supported-operation-not-supp%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Guess what letter conforming each word

          Port of Spain

          Run scheduled task as local user group (not BUILTIN)