塑膠數























12+162333+12−162333{displaystyle {sqrt[{3}]{{frac {1}{2}}+{frac {1}{6}}{sqrt {frac {23}{3}}}}}+{sqrt[{3}]{{frac {1}{2}}-{frac {1}{6}}{sqrt {frac {23}{3}}}}}}{displaystyle {sqrt[{3}]{{frac {1}{2}}+{frac {1}{6}}{sqrt {frac {23}{3}}}}}+{sqrt[{3}]{{frac {1}{2}}-{frac {1}{6}}{sqrt {frac {23}{3}}}}}}

二進位
約為1.010100110010000010110111010011101100101

八進位
約為1.2462026723545104533260274211370405060463

十進位
約為1.324717957244746025960908854478097340734

十六進位
約為1.5320B74ECA44ADAC178897C41461334737F8172F

塑膠數銀數是一元三次方程 x3=x+1{displaystyle x^{3}=x+1,}{displaystyle x^{3}=x+1,} 的唯一一個實數根,其值為


12+162333+12−162333{displaystyle {sqrt[{3}]{{frac {1}{2}}+{frac {1}{6}}{sqrt {frac {23}{3}}}}}+{sqrt[{3}]{{frac {1}{2}}-{frac {1}{6}}{sqrt {frac {23}{3}}}}}}{displaystyle {sqrt[{3}]{{frac {1}{2}}+{frac {1}{6}}{sqrt {frac {23}{3}}}}}+{sqrt[{3}]{{frac {1}{2}}-{frac {1}{6}}{sqrt {frac {23}{3}}}}}}

約等於1.3247179572447460259609{displaystyle 1.3247179572447460259609}{displaystyle 1.3247179572447460259609}


塑膠數對於佩蘭數列和巴都萬數列,就如黃金分割對於斐波那契數列——是兩項的比的極限。它亦是最小的皮索數。



塑膠數的來源


塑膠數是方程x3=x+1{displaystyle x^{3}=x+1,}{displaystyle x^{3}=x+1,}的唯一實數根。


對於方程x3=x+1{displaystyle x^{3}=x+1,}{displaystyle x^{3}=x+1,},現將等式右邊變為0,即


x3−x−1=0{displaystyle x^{3}-x-1=0,}{displaystyle x^{3}-x-1=0,}




x=λy+y{displaystyle x={frac {lambda }{y}}+y,}{displaystyle x={frac {lambda }{y}}+y,}




y=12x2−{displaystyle y={frac {1}{2}}{sqrt {x^{2}-4lambda }},}{displaystyle y={frac {1}{2}}{sqrt {x^{2}-4lambda }},}


得到


1−y−λy+(y+λy)3=0{displaystyle -1-y-{frac {lambda }{y}}+left(y+{frac {lambda }{y}}right)^{3}=0,}{displaystyle -1-y-{frac {lambda }{y}}+left(y+{frac {lambda }{y}}right)^{3}=0,}


等式兩邊同時乘 y3{displaystyle y^{3}}{displaystyle y^{3}}


y6+y4(3λ1)−y3+y2(3λ2−λ)+λ3=0{displaystyle y^{6}+y^{4}left(3lambda -1right)-y^{3}+y^{2}left(3lambda ^{2}-lambda right)+lambda ^{3}=0,}{displaystyle y^{6}+y^{4}left(3lambda -1right)-y^{3}+y^{2}left(3lambda ^{2}-lambda right)+lambda ^{3}=0,}


λ=13{displaystyle lambda ={frac {1}{3}},}{displaystyle lambda ={frac {1}{3}},},將其帶入上面方程,并設z=y3{displaystyle z=y^{3},}{displaystyle z=y^{3},},得到一個z{displaystyle z}z的二次方程


z2−z+127=0{displaystyle z^{2}-z+{frac {1}{27}}=0,}{displaystyle z^{2}-z+{frac {1}{27}}=0,}


解得


z=118(9+69){displaystyle z={frac {1}{18}}left(9+{sqrt {69}}right),}{displaystyle z={frac {1}{18}}left(9+{sqrt {69}}right),}


根據z=y3{displaystyle z=y^{3},}{displaystyle z=y^{3},},得


y3=118(9+69){displaystyle y^{3}={frac {1}{18}}left(9+{sqrt {69}}right),}{displaystyle y^{3}={frac {1}{18}}left(9+{sqrt {69}}right),}


y{displaystyle y}{displaystyle y}有實數解


y=12+162333{displaystyle y={sqrt[{3}]{{frac {1}{2}}+{frac {1}{6}}{sqrt {frac {23}{3}}}}},}{displaystyle y={sqrt[{3}]{{frac {1}{2}}+{frac {1}{6}}{sqrt {frac {23}{3}}}}},}


根據y{displaystyle y}{displaystyle y}λ{displaystyle lambda }lambda 的關係,得y=x2+12x2−43{displaystyle y={tfrac {x}{2}}+{tfrac {1}{2}}{sqrt {x^{2}-{tfrac {4}{3}}}},}{displaystyle y={tfrac {x}{2}}+{tfrac {1}{2}}{sqrt {x^{2}-{tfrac {4}{3}}}},},得x{displaystyle x}x的實數解


x=12+162333+12−162333{displaystyle x={sqrt[{3}]{{frac {1}{2}}+{frac {1}{6}}{sqrt {frac {23}{3}}}}}+{sqrt[{3}]{{frac {1}{2}}-{frac {1}{6}}{sqrt {frac {23}{3}}}}},}{displaystyle x={sqrt[{3}]{{frac {1}{2}}+{frac {1}{6}}{sqrt {frac {23}{3}}}}}+{sqrt[{3}]{{frac {1}{2}}-{frac {1}{6}}{sqrt {frac {23}{3}}}}},}








Popular posts from this blog

Guess what letter conforming each word

Run scheduled task as local user group (not BUILTIN)

Port of Spain