Solve a double summation in R
Is there any way of solving the following sum in R:
r
add a comment |
Is there any way of solving the following sum in R:
r
add a comment |
Is there any way of solving the following sum in R:
r
Is there any way of solving the following sum in R:
r
r
edited Nov 20 '18 at 18:18
m0nhawk
15.6k83262
15.6k83262
asked Nov 20 '18 at 18:18
Nasir AbbasNasir Abbas
186
186
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
You can calculate this without any for
loops:
double_sum <- function(j) {
sum(sapply(1:j, function(i) sum(1/i:j))^2) / j^2
}
And then calculate for each j
:
> sapply(1:50, outer_sum)
[1] 1.00000000 0.62500000 0.46296296 0.36979167 0.30866667 0.26527778 0.23279883 0.20753348 0.18729669 0.17071032
[11] 0.15686052 0.14511659 0.13502879 0.12626754 0.11858565 0.11179403 0.10574549 0.10032374 0.09543562 0.09100565
[21] 0.08697198 0.08328344 0.07989737 0.07677785 0.07389447 0.07122127 0.06873600 0.06641942 0.06425487 0.06222779
[31] 0.06032545 0.05853663 0.05685142 0.05526106 0.05375773 0.05233445 0.05098496 0.04970367 0.04848551 0.04732591
[41] 0.04622074 0.04516625 0.04415901 0.04319591 0.04227410 0.04139098 0.04054415 0.03973142 0.03895077 0.03820032
Or something strange (built upper triangle matrix for coefficient and then sum rows and results):
mat_sum <- function(j) {
d <- outer(rep(1, j), 1:j, FUN="/")
d[lower.tri(d)] <- 0
sum(rowSums(d)^2) / j^2
}
And benchmarks:
> s <- 1:100
> microbenchmark::microbenchmark(for_sum=sapply(s, sumfun), double_sum=sapply(s, double_sum), mat_sum=sapply(s, mat_sum))
Unit: milliseconds
expr min lq mean median uq max neval
for_sum 9.601222 10.261159 11.996525 10.774037 11.894962 30.56077 100
double_sum 6.075801 6.678923 8.787946 7.373223 8.697266 21.37783 100
mat_sum 7.809572 8.770058 13.766358 10.190758 18.500802 46.18336 100
Manually I checked, the second value of sum (for j=2) is 0.375. There is something wrong with the code.
– Nasir Abbas
Nov 21 '18 at 5:31
In Wolfram Mathematica I'm getting the same result, as in R. The exact value forj=2
is5/8
. Check the Wolfram|Alpha.
– m0nhawk
Nov 21 '18 at 16:10
Please, recheck your calculations, you took the square of each term, but you need to take the square of the whole inner sum. Here is the result forj=2
:(1/2 + 1/4)^2 + (1/4)^2 = 5/8
, and you calculated:(1/2)^2 + (1/4)^2 + (1/4)^2 = 3/8
.
– m0nhawk
Nov 21 '18 at 16:41
add a comment |
sumfun <- function(j) {
res <- 0
for(i in 1:j) {
temp <- 0
for(k in i:j) {
temp <- temp + 1/(k*j)
}
res <- res + temp^2
}
return(res)
}
sapply(1:50, sumfun)
[1] 1.00000000 0.62500000 0.46296296 0.36979167 0.30866667 0.26527778 0.23279883 0.20753348 0.18729669 0.17071032 0.15686052
[12] 0.14511659 0.13502879 0.12626754 0.11858565 0.11179403 0.10574549 0.10032374 0.09543562 0.09100565 0.08697198 0.08328344
[23] 0.07989737 0.07677785 0.07389447 0.07122127 0.06873600 0.06641942 0.06425487 0.06222779 0.06032545 0.05853663 0.05685142
[34] 0.05526106 0.05375773 0.05233445 0.05098496 0.04970367 0.04848551 0.04732591 0.04622074 0.04516625 0.04415901 0.04319591
[45] 0.04227410 0.04139098 0.04054415 0.03973142 0.03895077 0.03820032
Manually I checked, the second value of sum (for j=2) is 0.375. There is something wrong with the code.
– Nasir Abbas
Nov 21 '18 at 5:33
Check your work. The double sum for J=2 is (1/2 + 1/4)^2 + 1/4^2 = 10/16 = 0.625.
– Dan Y
Nov 21 '18 at 5:45
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
StackExchange.using("externalEditor", function () {
StackExchange.using("snippets", function () {
StackExchange.snippets.init();
});
});
}, "code-snippets");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "1"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53399150%2fsolve-a-double-summation-in-r%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
You can calculate this without any for
loops:
double_sum <- function(j) {
sum(sapply(1:j, function(i) sum(1/i:j))^2) / j^2
}
And then calculate for each j
:
> sapply(1:50, outer_sum)
[1] 1.00000000 0.62500000 0.46296296 0.36979167 0.30866667 0.26527778 0.23279883 0.20753348 0.18729669 0.17071032
[11] 0.15686052 0.14511659 0.13502879 0.12626754 0.11858565 0.11179403 0.10574549 0.10032374 0.09543562 0.09100565
[21] 0.08697198 0.08328344 0.07989737 0.07677785 0.07389447 0.07122127 0.06873600 0.06641942 0.06425487 0.06222779
[31] 0.06032545 0.05853663 0.05685142 0.05526106 0.05375773 0.05233445 0.05098496 0.04970367 0.04848551 0.04732591
[41] 0.04622074 0.04516625 0.04415901 0.04319591 0.04227410 0.04139098 0.04054415 0.03973142 0.03895077 0.03820032
Or something strange (built upper triangle matrix for coefficient and then sum rows and results):
mat_sum <- function(j) {
d <- outer(rep(1, j), 1:j, FUN="/")
d[lower.tri(d)] <- 0
sum(rowSums(d)^2) / j^2
}
And benchmarks:
> s <- 1:100
> microbenchmark::microbenchmark(for_sum=sapply(s, sumfun), double_sum=sapply(s, double_sum), mat_sum=sapply(s, mat_sum))
Unit: milliseconds
expr min lq mean median uq max neval
for_sum 9.601222 10.261159 11.996525 10.774037 11.894962 30.56077 100
double_sum 6.075801 6.678923 8.787946 7.373223 8.697266 21.37783 100
mat_sum 7.809572 8.770058 13.766358 10.190758 18.500802 46.18336 100
Manually I checked, the second value of sum (for j=2) is 0.375. There is something wrong with the code.
– Nasir Abbas
Nov 21 '18 at 5:31
In Wolfram Mathematica I'm getting the same result, as in R. The exact value forj=2
is5/8
. Check the Wolfram|Alpha.
– m0nhawk
Nov 21 '18 at 16:10
Please, recheck your calculations, you took the square of each term, but you need to take the square of the whole inner sum. Here is the result forj=2
:(1/2 + 1/4)^2 + (1/4)^2 = 5/8
, and you calculated:(1/2)^2 + (1/4)^2 + (1/4)^2 = 3/8
.
– m0nhawk
Nov 21 '18 at 16:41
add a comment |
You can calculate this without any for
loops:
double_sum <- function(j) {
sum(sapply(1:j, function(i) sum(1/i:j))^2) / j^2
}
And then calculate for each j
:
> sapply(1:50, outer_sum)
[1] 1.00000000 0.62500000 0.46296296 0.36979167 0.30866667 0.26527778 0.23279883 0.20753348 0.18729669 0.17071032
[11] 0.15686052 0.14511659 0.13502879 0.12626754 0.11858565 0.11179403 0.10574549 0.10032374 0.09543562 0.09100565
[21] 0.08697198 0.08328344 0.07989737 0.07677785 0.07389447 0.07122127 0.06873600 0.06641942 0.06425487 0.06222779
[31] 0.06032545 0.05853663 0.05685142 0.05526106 0.05375773 0.05233445 0.05098496 0.04970367 0.04848551 0.04732591
[41] 0.04622074 0.04516625 0.04415901 0.04319591 0.04227410 0.04139098 0.04054415 0.03973142 0.03895077 0.03820032
Or something strange (built upper triangle matrix for coefficient and then sum rows and results):
mat_sum <- function(j) {
d <- outer(rep(1, j), 1:j, FUN="/")
d[lower.tri(d)] <- 0
sum(rowSums(d)^2) / j^2
}
And benchmarks:
> s <- 1:100
> microbenchmark::microbenchmark(for_sum=sapply(s, sumfun), double_sum=sapply(s, double_sum), mat_sum=sapply(s, mat_sum))
Unit: milliseconds
expr min lq mean median uq max neval
for_sum 9.601222 10.261159 11.996525 10.774037 11.894962 30.56077 100
double_sum 6.075801 6.678923 8.787946 7.373223 8.697266 21.37783 100
mat_sum 7.809572 8.770058 13.766358 10.190758 18.500802 46.18336 100
Manually I checked, the second value of sum (for j=2) is 0.375. There is something wrong with the code.
– Nasir Abbas
Nov 21 '18 at 5:31
In Wolfram Mathematica I'm getting the same result, as in R. The exact value forj=2
is5/8
. Check the Wolfram|Alpha.
– m0nhawk
Nov 21 '18 at 16:10
Please, recheck your calculations, you took the square of each term, but you need to take the square of the whole inner sum. Here is the result forj=2
:(1/2 + 1/4)^2 + (1/4)^2 = 5/8
, and you calculated:(1/2)^2 + (1/4)^2 + (1/4)^2 = 3/8
.
– m0nhawk
Nov 21 '18 at 16:41
add a comment |
You can calculate this without any for
loops:
double_sum <- function(j) {
sum(sapply(1:j, function(i) sum(1/i:j))^2) / j^2
}
And then calculate for each j
:
> sapply(1:50, outer_sum)
[1] 1.00000000 0.62500000 0.46296296 0.36979167 0.30866667 0.26527778 0.23279883 0.20753348 0.18729669 0.17071032
[11] 0.15686052 0.14511659 0.13502879 0.12626754 0.11858565 0.11179403 0.10574549 0.10032374 0.09543562 0.09100565
[21] 0.08697198 0.08328344 0.07989737 0.07677785 0.07389447 0.07122127 0.06873600 0.06641942 0.06425487 0.06222779
[31] 0.06032545 0.05853663 0.05685142 0.05526106 0.05375773 0.05233445 0.05098496 0.04970367 0.04848551 0.04732591
[41] 0.04622074 0.04516625 0.04415901 0.04319591 0.04227410 0.04139098 0.04054415 0.03973142 0.03895077 0.03820032
Or something strange (built upper triangle matrix for coefficient and then sum rows and results):
mat_sum <- function(j) {
d <- outer(rep(1, j), 1:j, FUN="/")
d[lower.tri(d)] <- 0
sum(rowSums(d)^2) / j^2
}
And benchmarks:
> s <- 1:100
> microbenchmark::microbenchmark(for_sum=sapply(s, sumfun), double_sum=sapply(s, double_sum), mat_sum=sapply(s, mat_sum))
Unit: milliseconds
expr min lq mean median uq max neval
for_sum 9.601222 10.261159 11.996525 10.774037 11.894962 30.56077 100
double_sum 6.075801 6.678923 8.787946 7.373223 8.697266 21.37783 100
mat_sum 7.809572 8.770058 13.766358 10.190758 18.500802 46.18336 100
You can calculate this without any for
loops:
double_sum <- function(j) {
sum(sapply(1:j, function(i) sum(1/i:j))^2) / j^2
}
And then calculate for each j
:
> sapply(1:50, outer_sum)
[1] 1.00000000 0.62500000 0.46296296 0.36979167 0.30866667 0.26527778 0.23279883 0.20753348 0.18729669 0.17071032
[11] 0.15686052 0.14511659 0.13502879 0.12626754 0.11858565 0.11179403 0.10574549 0.10032374 0.09543562 0.09100565
[21] 0.08697198 0.08328344 0.07989737 0.07677785 0.07389447 0.07122127 0.06873600 0.06641942 0.06425487 0.06222779
[31] 0.06032545 0.05853663 0.05685142 0.05526106 0.05375773 0.05233445 0.05098496 0.04970367 0.04848551 0.04732591
[41] 0.04622074 0.04516625 0.04415901 0.04319591 0.04227410 0.04139098 0.04054415 0.03973142 0.03895077 0.03820032
Or something strange (built upper triangle matrix for coefficient and then sum rows and results):
mat_sum <- function(j) {
d <- outer(rep(1, j), 1:j, FUN="/")
d[lower.tri(d)] <- 0
sum(rowSums(d)^2) / j^2
}
And benchmarks:
> s <- 1:100
> microbenchmark::microbenchmark(for_sum=sapply(s, sumfun), double_sum=sapply(s, double_sum), mat_sum=sapply(s, mat_sum))
Unit: milliseconds
expr min lq mean median uq max neval
for_sum 9.601222 10.261159 11.996525 10.774037 11.894962 30.56077 100
double_sum 6.075801 6.678923 8.787946 7.373223 8.697266 21.37783 100
mat_sum 7.809572 8.770058 13.766358 10.190758 18.500802 46.18336 100
edited Nov 20 '18 at 19:19
answered Nov 20 '18 at 18:40
m0nhawkm0nhawk
15.6k83262
15.6k83262
Manually I checked, the second value of sum (for j=2) is 0.375. There is something wrong with the code.
– Nasir Abbas
Nov 21 '18 at 5:31
In Wolfram Mathematica I'm getting the same result, as in R. The exact value forj=2
is5/8
. Check the Wolfram|Alpha.
– m0nhawk
Nov 21 '18 at 16:10
Please, recheck your calculations, you took the square of each term, but you need to take the square of the whole inner sum. Here is the result forj=2
:(1/2 + 1/4)^2 + (1/4)^2 = 5/8
, and you calculated:(1/2)^2 + (1/4)^2 + (1/4)^2 = 3/8
.
– m0nhawk
Nov 21 '18 at 16:41
add a comment |
Manually I checked, the second value of sum (for j=2) is 0.375. There is something wrong with the code.
– Nasir Abbas
Nov 21 '18 at 5:31
In Wolfram Mathematica I'm getting the same result, as in R. The exact value forj=2
is5/8
. Check the Wolfram|Alpha.
– m0nhawk
Nov 21 '18 at 16:10
Please, recheck your calculations, you took the square of each term, but you need to take the square of the whole inner sum. Here is the result forj=2
:(1/2 + 1/4)^2 + (1/4)^2 = 5/8
, and you calculated:(1/2)^2 + (1/4)^2 + (1/4)^2 = 3/8
.
– m0nhawk
Nov 21 '18 at 16:41
Manually I checked, the second value of sum (for j=2) is 0.375. There is something wrong with the code.
– Nasir Abbas
Nov 21 '18 at 5:31
Manually I checked, the second value of sum (for j=2) is 0.375. There is something wrong with the code.
– Nasir Abbas
Nov 21 '18 at 5:31
In Wolfram Mathematica I'm getting the same result, as in R. The exact value for
j=2
is 5/8
. Check the Wolfram|Alpha.– m0nhawk
Nov 21 '18 at 16:10
In Wolfram Mathematica I'm getting the same result, as in R. The exact value for
j=2
is 5/8
. Check the Wolfram|Alpha.– m0nhawk
Nov 21 '18 at 16:10
Please, recheck your calculations, you took the square of each term, but you need to take the square of the whole inner sum. Here is the result for
j=2
: (1/2 + 1/4)^2 + (1/4)^2 = 5/8
, and you calculated: (1/2)^2 + (1/4)^2 + (1/4)^2 = 3/8
.– m0nhawk
Nov 21 '18 at 16:41
Please, recheck your calculations, you took the square of each term, but you need to take the square of the whole inner sum. Here is the result for
j=2
: (1/2 + 1/4)^2 + (1/4)^2 = 5/8
, and you calculated: (1/2)^2 + (1/4)^2 + (1/4)^2 = 3/8
.– m0nhawk
Nov 21 '18 at 16:41
add a comment |
sumfun <- function(j) {
res <- 0
for(i in 1:j) {
temp <- 0
for(k in i:j) {
temp <- temp + 1/(k*j)
}
res <- res + temp^2
}
return(res)
}
sapply(1:50, sumfun)
[1] 1.00000000 0.62500000 0.46296296 0.36979167 0.30866667 0.26527778 0.23279883 0.20753348 0.18729669 0.17071032 0.15686052
[12] 0.14511659 0.13502879 0.12626754 0.11858565 0.11179403 0.10574549 0.10032374 0.09543562 0.09100565 0.08697198 0.08328344
[23] 0.07989737 0.07677785 0.07389447 0.07122127 0.06873600 0.06641942 0.06425487 0.06222779 0.06032545 0.05853663 0.05685142
[34] 0.05526106 0.05375773 0.05233445 0.05098496 0.04970367 0.04848551 0.04732591 0.04622074 0.04516625 0.04415901 0.04319591
[45] 0.04227410 0.04139098 0.04054415 0.03973142 0.03895077 0.03820032
Manually I checked, the second value of sum (for j=2) is 0.375. There is something wrong with the code.
– Nasir Abbas
Nov 21 '18 at 5:33
Check your work. The double sum for J=2 is (1/2 + 1/4)^2 + 1/4^2 = 10/16 = 0.625.
– Dan Y
Nov 21 '18 at 5:45
add a comment |
sumfun <- function(j) {
res <- 0
for(i in 1:j) {
temp <- 0
for(k in i:j) {
temp <- temp + 1/(k*j)
}
res <- res + temp^2
}
return(res)
}
sapply(1:50, sumfun)
[1] 1.00000000 0.62500000 0.46296296 0.36979167 0.30866667 0.26527778 0.23279883 0.20753348 0.18729669 0.17071032 0.15686052
[12] 0.14511659 0.13502879 0.12626754 0.11858565 0.11179403 0.10574549 0.10032374 0.09543562 0.09100565 0.08697198 0.08328344
[23] 0.07989737 0.07677785 0.07389447 0.07122127 0.06873600 0.06641942 0.06425487 0.06222779 0.06032545 0.05853663 0.05685142
[34] 0.05526106 0.05375773 0.05233445 0.05098496 0.04970367 0.04848551 0.04732591 0.04622074 0.04516625 0.04415901 0.04319591
[45] 0.04227410 0.04139098 0.04054415 0.03973142 0.03895077 0.03820032
Manually I checked, the second value of sum (for j=2) is 0.375. There is something wrong with the code.
– Nasir Abbas
Nov 21 '18 at 5:33
Check your work. The double sum for J=2 is (1/2 + 1/4)^2 + 1/4^2 = 10/16 = 0.625.
– Dan Y
Nov 21 '18 at 5:45
add a comment |
sumfun <- function(j) {
res <- 0
for(i in 1:j) {
temp <- 0
for(k in i:j) {
temp <- temp + 1/(k*j)
}
res <- res + temp^2
}
return(res)
}
sapply(1:50, sumfun)
[1] 1.00000000 0.62500000 0.46296296 0.36979167 0.30866667 0.26527778 0.23279883 0.20753348 0.18729669 0.17071032 0.15686052
[12] 0.14511659 0.13502879 0.12626754 0.11858565 0.11179403 0.10574549 0.10032374 0.09543562 0.09100565 0.08697198 0.08328344
[23] 0.07989737 0.07677785 0.07389447 0.07122127 0.06873600 0.06641942 0.06425487 0.06222779 0.06032545 0.05853663 0.05685142
[34] 0.05526106 0.05375773 0.05233445 0.05098496 0.04970367 0.04848551 0.04732591 0.04622074 0.04516625 0.04415901 0.04319591
[45] 0.04227410 0.04139098 0.04054415 0.03973142 0.03895077 0.03820032
sumfun <- function(j) {
res <- 0
for(i in 1:j) {
temp <- 0
for(k in i:j) {
temp <- temp + 1/(k*j)
}
res <- res + temp^2
}
return(res)
}
sapply(1:50, sumfun)
[1] 1.00000000 0.62500000 0.46296296 0.36979167 0.30866667 0.26527778 0.23279883 0.20753348 0.18729669 0.17071032 0.15686052
[12] 0.14511659 0.13502879 0.12626754 0.11858565 0.11179403 0.10574549 0.10032374 0.09543562 0.09100565 0.08697198 0.08328344
[23] 0.07989737 0.07677785 0.07389447 0.07122127 0.06873600 0.06641942 0.06425487 0.06222779 0.06032545 0.05853663 0.05685142
[34] 0.05526106 0.05375773 0.05233445 0.05098496 0.04970367 0.04848551 0.04732591 0.04622074 0.04516625 0.04415901 0.04319591
[45] 0.04227410 0.04139098 0.04054415 0.03973142 0.03895077 0.03820032
edited Nov 20 '18 at 18:44
answered Nov 20 '18 at 18:32
Dan YDan Y
3,7211627
3,7211627
Manually I checked, the second value of sum (for j=2) is 0.375. There is something wrong with the code.
– Nasir Abbas
Nov 21 '18 at 5:33
Check your work. The double sum for J=2 is (1/2 + 1/4)^2 + 1/4^2 = 10/16 = 0.625.
– Dan Y
Nov 21 '18 at 5:45
add a comment |
Manually I checked, the second value of sum (for j=2) is 0.375. There is something wrong with the code.
– Nasir Abbas
Nov 21 '18 at 5:33
Check your work. The double sum for J=2 is (1/2 + 1/4)^2 + 1/4^2 = 10/16 = 0.625.
– Dan Y
Nov 21 '18 at 5:45
Manually I checked, the second value of sum (for j=2) is 0.375. There is something wrong with the code.
– Nasir Abbas
Nov 21 '18 at 5:33
Manually I checked, the second value of sum (for j=2) is 0.375. There is something wrong with the code.
– Nasir Abbas
Nov 21 '18 at 5:33
Check your work. The double sum for J=2 is (1/2 + 1/4)^2 + 1/4^2 = 10/16 = 0.625.
– Dan Y
Nov 21 '18 at 5:45
Check your work. The double sum for J=2 is (1/2 + 1/4)^2 + 1/4^2 = 10/16 = 0.625.
– Dan Y
Nov 21 '18 at 5:45
add a comment |
Thanks for contributing an answer to Stack Overflow!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53399150%2fsolve-a-double-summation-in-r%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown