p-群
在數學裡,給定一質數p,p-群即是指一個其每個元素都有p的次方階的週期群。亦即,對每個群內的元素g,都存在一個正整數n使得g的pn次方等於其單位元素。
若G是有限的,則其會和G自身的階為p的次方之敘述相等價。關於有限p-群的結構已知道了許多,其中第一個使用類方程的標準結論為一個非當然有限p-群的中心不可能為一個當然子群。一個pn階的p-群會包含著pi階的子群,其中0 ≤ i ≤ n。更一般性地,每一個有限p-群都會是冪零群,且因此都會是可解群。
有相同階的p-群不一定會互相同構;例如,循環群C4和克萊因四元群都是4階的2-群,但兩者並不同構。一個p-群不一定要是阿貝爾群;如8階的二面體群即為一個非可換2-群。(但每個p2階的群都會是可換的。)
以趨進的觀點來看,幾乎所有的有限群都會是p-群。實際上,幾乎所有的有限群都是2-群:2-群的同構類與其階至多為n之群的同構類的比例在當n趨進於無限大時會趨進於1。例如,其階至多為2000的所有不同的群會有99%為1024階的2-群。[1]
每一個非當然有限群都會包括一個為非當然p-群之子群。詳述請見西洛定理。
無限群的例子,見普呂弗群。
另見
- 冪零群
- 西洛子群
- 普呂弗秩
- 超特別群
參考
^ Besche, Hans Ulrich, Bettina Eick and Eamonn O'Brien. (2001) 小群圖書館 互联网档案馆的存檔,存档日期2007-09-30.
|