AttributeError: 'Tensor' object has no attribute '_keras_shape'












4














I'm trying to run code below to generate a JSON file and use it to built a t-SNE with a set of images. However my experience with Keras and machine learning is limited and I'm unable to run code below and getting error: AttributeError: 'Tensor' object has no attribute '_keras_shape'



import argparse
import sys
import numpy as np
import json
import os
from os.path import isfile, join
import keras
from keras.preprocessing import image
from keras.applications.imagenet_utils import decode_predictions, preprocess_input
from keras.models import Model
from sklearn.decomposition import PCA
from sklearn.manifold import TSNE
from scipy.spatial import distance

def process_arguments(args):
parser = argparse.ArgumentParser(description='tSNE on audio')
parser.add_argument('--images_path', action='store', help='path to directory of images')
parser.add_argument('--output_path', action='store', help='path to where to put output json file')
parser.add_argument('--num_dimensions', action='store', default=2, help='dimensionality of t-SNE points (default 2)')
parser.add_argument('--perplexity', action='store', default=30, help='perplexity of t-SNE (default 30)')
parser.add_argument('--learning_rate', action='store', default=150, help='learning rate of t-SNE (default 150)')
params = vars(parser.parse_args(args))
return params

def get_image(path, input_shape):
img = image.load_img(path, target_size=input_shape)
x = image.img_to_array(img)
x = np.expand_dims(x, axis=0)
x = preprocess_input(x)
return x

def find_candidate_images(images_path):
"""
Finds all candidate images in the given folder and its sub-folders.
Returns:
images: a list of absolute paths to the discovered images.
"""
images =
for root, dirs, files in os.walk(images_path):
for name in files:
file_path = os.path.abspath(os.path.join(root, name))
if ((os.path.splitext(name)[1]).lower() in ['.jpg','.png','.jpeg']):
images.append(file_path)
return images

def analyze_images(images_path):
# make feature_extractor
model = keras.applications.VGG16(weights='imagenet', include_top=True)
feat_extractor = Model(inputs=model.input, outputs=model.get_layer("fc2").output)
input_shape = model.input_shape[1:3]
# get images
candidate_images = find_candidate_images(images_path)
# analyze images and grab activations
activations =
images =
for idx,image_path in enumerate(candidate_images):
file_path = join(images_path,image_path)
img = get_image(file_path, input_shape);
if img is not None:
print("getting activations for %s %d/%d" % (image_path,idx,len(candidate_images)))
acts = feat_extractor.predict(img)[0]
activations.append(acts)
images.append(image_path)
# run PCA firt
print("Running PCA on %d images..." % len(activations))
features = np.array(activations)
pca = PCA(n_components=300)
pca.fit(features)
pca_features = pca.transform(features)
return images, pca_features

def run_tsne(images_path, output_path, tsne_dimensions, tsne_perplexity, tsne_learning_rate):
images, pca_features = analyze_images(images_path)
print("Running t-SNE on %d images..." % len(images))
X = np.array(pca_features)
tsne = TSNE(n_components=tsne_dimensions, learning_rate=tsne_learning_rate, perplexity=tsne_perplexity, verbose=2).fit_transform(X)
# save data to json
data =
for i,f in enumerate(images):
point = [float((tsne[i,k] - np.min(tsne[:,k]))/(np.max(tsne[:,k]) - np.min(tsne[:,k]))) for k in range(tsne_dimensions) ]
data.append({"path":os.path.abspath(join(images_path,images[i])), "point":point})
with open(output_path, 'w') as outfile:
json.dump(data, outfile)


if __name__ == '__main__':
params = process_arguments(sys.argv[1:])
images_path = params['images_path']
output_path = params['output_path']
tsne_dimensions = int(params['num_dimensions'])
tsne_perplexity = int(params['perplexity'])
tsne_learning_rate = int(params['learning_rate'])
run_tsne(images_path, output_path, tsne_dimensions, tsne_perplexity, tsne_learning_rate)
print("finished saving %s" % output_path)


from: https://github.com/ml4a/ml4a-ofx/blob/master/scripts/tSNE-images.py



Here is what I'm getting:



    Traceback (most recent call last):
File "tSNE-images.py", line 95, in <module>
run_tsne(images_path, output_path, tsne_dimensions, tsne_perplexity, tsne_learning_rate)
File "tSNE-images.py", line 75, in run_tsne
images, pca_features = analyze_images(images_path)
File "tSNE-images.py", line 50, in analyze_images
feat_extractor = Model(inputs=model.input, outputs=model.get_layer("fc2").output)
File "/Users/.../anaconda3/lib/python3.6/site-packages/keras/legacy/interfaces.py", line 91, in wrapper
return func(*args, **kwargs)
File "/Users/.../anaconda3/lib/python3.6/site-packages/keras/engine/network.py", line 91, in __init__
self._init_graph_network(*args, **kwargs)
File "/Users/.../anaconda3/lib/python3.6/site-packages/keras/engine/network.py", line 251, in _init_graph_network
input_shapes=[x._keras_shape for x in self.inputs],
File "/Users/.../anaconda3/lib/python3.6/site-packages/keras/engine/network.py", line 251, in <listcomp>
input_shapes=[x._keras_shape for x in self.inputs],
AttributeError: 'Tensor' object has no attribute '_keras_shape'


I found similar error in here:



`https://stackoverflow.com/questions/47616588/keras-throws-tensor-object-has-no-attribute-keras-shape-when-splitting-a`


However I can't seem to figure out how to go about updating code using Lambda. How can I solve this error?










share|improve this question
























  • It would be best if you could make a minimal, complete and verifiable example where the errors shows up, instead of posting your complete program. Could you include the stack trace for the exception that you are seeing?
    – jdehesa
    Nov 13 at 17:17












  • @jdehesa I have updated with the stack trace. Thanks
    – user2300867
    Nov 13 at 18:04










  • @user2300867 Upgrade your Keras and Tensorflow and see if the error is resolved.
    – today
    Nov 15 at 18:57


















4














I'm trying to run code below to generate a JSON file and use it to built a t-SNE with a set of images. However my experience with Keras and machine learning is limited and I'm unable to run code below and getting error: AttributeError: 'Tensor' object has no attribute '_keras_shape'



import argparse
import sys
import numpy as np
import json
import os
from os.path import isfile, join
import keras
from keras.preprocessing import image
from keras.applications.imagenet_utils import decode_predictions, preprocess_input
from keras.models import Model
from sklearn.decomposition import PCA
from sklearn.manifold import TSNE
from scipy.spatial import distance

def process_arguments(args):
parser = argparse.ArgumentParser(description='tSNE on audio')
parser.add_argument('--images_path', action='store', help='path to directory of images')
parser.add_argument('--output_path', action='store', help='path to where to put output json file')
parser.add_argument('--num_dimensions', action='store', default=2, help='dimensionality of t-SNE points (default 2)')
parser.add_argument('--perplexity', action='store', default=30, help='perplexity of t-SNE (default 30)')
parser.add_argument('--learning_rate', action='store', default=150, help='learning rate of t-SNE (default 150)')
params = vars(parser.parse_args(args))
return params

def get_image(path, input_shape):
img = image.load_img(path, target_size=input_shape)
x = image.img_to_array(img)
x = np.expand_dims(x, axis=0)
x = preprocess_input(x)
return x

def find_candidate_images(images_path):
"""
Finds all candidate images in the given folder and its sub-folders.
Returns:
images: a list of absolute paths to the discovered images.
"""
images =
for root, dirs, files in os.walk(images_path):
for name in files:
file_path = os.path.abspath(os.path.join(root, name))
if ((os.path.splitext(name)[1]).lower() in ['.jpg','.png','.jpeg']):
images.append(file_path)
return images

def analyze_images(images_path):
# make feature_extractor
model = keras.applications.VGG16(weights='imagenet', include_top=True)
feat_extractor = Model(inputs=model.input, outputs=model.get_layer("fc2").output)
input_shape = model.input_shape[1:3]
# get images
candidate_images = find_candidate_images(images_path)
# analyze images and grab activations
activations =
images =
for idx,image_path in enumerate(candidate_images):
file_path = join(images_path,image_path)
img = get_image(file_path, input_shape);
if img is not None:
print("getting activations for %s %d/%d" % (image_path,idx,len(candidate_images)))
acts = feat_extractor.predict(img)[0]
activations.append(acts)
images.append(image_path)
# run PCA firt
print("Running PCA on %d images..." % len(activations))
features = np.array(activations)
pca = PCA(n_components=300)
pca.fit(features)
pca_features = pca.transform(features)
return images, pca_features

def run_tsne(images_path, output_path, tsne_dimensions, tsne_perplexity, tsne_learning_rate):
images, pca_features = analyze_images(images_path)
print("Running t-SNE on %d images..." % len(images))
X = np.array(pca_features)
tsne = TSNE(n_components=tsne_dimensions, learning_rate=tsne_learning_rate, perplexity=tsne_perplexity, verbose=2).fit_transform(X)
# save data to json
data =
for i,f in enumerate(images):
point = [float((tsne[i,k] - np.min(tsne[:,k]))/(np.max(tsne[:,k]) - np.min(tsne[:,k]))) for k in range(tsne_dimensions) ]
data.append({"path":os.path.abspath(join(images_path,images[i])), "point":point})
with open(output_path, 'w') as outfile:
json.dump(data, outfile)


if __name__ == '__main__':
params = process_arguments(sys.argv[1:])
images_path = params['images_path']
output_path = params['output_path']
tsne_dimensions = int(params['num_dimensions'])
tsne_perplexity = int(params['perplexity'])
tsne_learning_rate = int(params['learning_rate'])
run_tsne(images_path, output_path, tsne_dimensions, tsne_perplexity, tsne_learning_rate)
print("finished saving %s" % output_path)


from: https://github.com/ml4a/ml4a-ofx/blob/master/scripts/tSNE-images.py



Here is what I'm getting:



    Traceback (most recent call last):
File "tSNE-images.py", line 95, in <module>
run_tsne(images_path, output_path, tsne_dimensions, tsne_perplexity, tsne_learning_rate)
File "tSNE-images.py", line 75, in run_tsne
images, pca_features = analyze_images(images_path)
File "tSNE-images.py", line 50, in analyze_images
feat_extractor = Model(inputs=model.input, outputs=model.get_layer("fc2").output)
File "/Users/.../anaconda3/lib/python3.6/site-packages/keras/legacy/interfaces.py", line 91, in wrapper
return func(*args, **kwargs)
File "/Users/.../anaconda3/lib/python3.6/site-packages/keras/engine/network.py", line 91, in __init__
self._init_graph_network(*args, **kwargs)
File "/Users/.../anaconda3/lib/python3.6/site-packages/keras/engine/network.py", line 251, in _init_graph_network
input_shapes=[x._keras_shape for x in self.inputs],
File "/Users/.../anaconda3/lib/python3.6/site-packages/keras/engine/network.py", line 251, in <listcomp>
input_shapes=[x._keras_shape for x in self.inputs],
AttributeError: 'Tensor' object has no attribute '_keras_shape'


I found similar error in here:



`https://stackoverflow.com/questions/47616588/keras-throws-tensor-object-has-no-attribute-keras-shape-when-splitting-a`


However I can't seem to figure out how to go about updating code using Lambda. How can I solve this error?










share|improve this question
























  • It would be best if you could make a minimal, complete and verifiable example where the errors shows up, instead of posting your complete program. Could you include the stack trace for the exception that you are seeing?
    – jdehesa
    Nov 13 at 17:17












  • @jdehesa I have updated with the stack trace. Thanks
    – user2300867
    Nov 13 at 18:04










  • @user2300867 Upgrade your Keras and Tensorflow and see if the error is resolved.
    – today
    Nov 15 at 18:57
















4












4








4







I'm trying to run code below to generate a JSON file and use it to built a t-SNE with a set of images. However my experience with Keras and machine learning is limited and I'm unable to run code below and getting error: AttributeError: 'Tensor' object has no attribute '_keras_shape'



import argparse
import sys
import numpy as np
import json
import os
from os.path import isfile, join
import keras
from keras.preprocessing import image
from keras.applications.imagenet_utils import decode_predictions, preprocess_input
from keras.models import Model
from sklearn.decomposition import PCA
from sklearn.manifold import TSNE
from scipy.spatial import distance

def process_arguments(args):
parser = argparse.ArgumentParser(description='tSNE on audio')
parser.add_argument('--images_path', action='store', help='path to directory of images')
parser.add_argument('--output_path', action='store', help='path to where to put output json file')
parser.add_argument('--num_dimensions', action='store', default=2, help='dimensionality of t-SNE points (default 2)')
parser.add_argument('--perplexity', action='store', default=30, help='perplexity of t-SNE (default 30)')
parser.add_argument('--learning_rate', action='store', default=150, help='learning rate of t-SNE (default 150)')
params = vars(parser.parse_args(args))
return params

def get_image(path, input_shape):
img = image.load_img(path, target_size=input_shape)
x = image.img_to_array(img)
x = np.expand_dims(x, axis=0)
x = preprocess_input(x)
return x

def find_candidate_images(images_path):
"""
Finds all candidate images in the given folder and its sub-folders.
Returns:
images: a list of absolute paths to the discovered images.
"""
images =
for root, dirs, files in os.walk(images_path):
for name in files:
file_path = os.path.abspath(os.path.join(root, name))
if ((os.path.splitext(name)[1]).lower() in ['.jpg','.png','.jpeg']):
images.append(file_path)
return images

def analyze_images(images_path):
# make feature_extractor
model = keras.applications.VGG16(weights='imagenet', include_top=True)
feat_extractor = Model(inputs=model.input, outputs=model.get_layer("fc2").output)
input_shape = model.input_shape[1:3]
# get images
candidate_images = find_candidate_images(images_path)
# analyze images and grab activations
activations =
images =
for idx,image_path in enumerate(candidate_images):
file_path = join(images_path,image_path)
img = get_image(file_path, input_shape);
if img is not None:
print("getting activations for %s %d/%d" % (image_path,idx,len(candidate_images)))
acts = feat_extractor.predict(img)[0]
activations.append(acts)
images.append(image_path)
# run PCA firt
print("Running PCA on %d images..." % len(activations))
features = np.array(activations)
pca = PCA(n_components=300)
pca.fit(features)
pca_features = pca.transform(features)
return images, pca_features

def run_tsne(images_path, output_path, tsne_dimensions, tsne_perplexity, tsne_learning_rate):
images, pca_features = analyze_images(images_path)
print("Running t-SNE on %d images..." % len(images))
X = np.array(pca_features)
tsne = TSNE(n_components=tsne_dimensions, learning_rate=tsne_learning_rate, perplexity=tsne_perplexity, verbose=2).fit_transform(X)
# save data to json
data =
for i,f in enumerate(images):
point = [float((tsne[i,k] - np.min(tsne[:,k]))/(np.max(tsne[:,k]) - np.min(tsne[:,k]))) for k in range(tsne_dimensions) ]
data.append({"path":os.path.abspath(join(images_path,images[i])), "point":point})
with open(output_path, 'w') as outfile:
json.dump(data, outfile)


if __name__ == '__main__':
params = process_arguments(sys.argv[1:])
images_path = params['images_path']
output_path = params['output_path']
tsne_dimensions = int(params['num_dimensions'])
tsne_perplexity = int(params['perplexity'])
tsne_learning_rate = int(params['learning_rate'])
run_tsne(images_path, output_path, tsne_dimensions, tsne_perplexity, tsne_learning_rate)
print("finished saving %s" % output_path)


from: https://github.com/ml4a/ml4a-ofx/blob/master/scripts/tSNE-images.py



Here is what I'm getting:



    Traceback (most recent call last):
File "tSNE-images.py", line 95, in <module>
run_tsne(images_path, output_path, tsne_dimensions, tsne_perplexity, tsne_learning_rate)
File "tSNE-images.py", line 75, in run_tsne
images, pca_features = analyze_images(images_path)
File "tSNE-images.py", line 50, in analyze_images
feat_extractor = Model(inputs=model.input, outputs=model.get_layer("fc2").output)
File "/Users/.../anaconda3/lib/python3.6/site-packages/keras/legacy/interfaces.py", line 91, in wrapper
return func(*args, **kwargs)
File "/Users/.../anaconda3/lib/python3.6/site-packages/keras/engine/network.py", line 91, in __init__
self._init_graph_network(*args, **kwargs)
File "/Users/.../anaconda3/lib/python3.6/site-packages/keras/engine/network.py", line 251, in _init_graph_network
input_shapes=[x._keras_shape for x in self.inputs],
File "/Users/.../anaconda3/lib/python3.6/site-packages/keras/engine/network.py", line 251, in <listcomp>
input_shapes=[x._keras_shape for x in self.inputs],
AttributeError: 'Tensor' object has no attribute '_keras_shape'


I found similar error in here:



`https://stackoverflow.com/questions/47616588/keras-throws-tensor-object-has-no-attribute-keras-shape-when-splitting-a`


However I can't seem to figure out how to go about updating code using Lambda. How can I solve this error?










share|improve this question















I'm trying to run code below to generate a JSON file and use it to built a t-SNE with a set of images. However my experience with Keras and machine learning is limited and I'm unable to run code below and getting error: AttributeError: 'Tensor' object has no attribute '_keras_shape'



import argparse
import sys
import numpy as np
import json
import os
from os.path import isfile, join
import keras
from keras.preprocessing import image
from keras.applications.imagenet_utils import decode_predictions, preprocess_input
from keras.models import Model
from sklearn.decomposition import PCA
from sklearn.manifold import TSNE
from scipy.spatial import distance

def process_arguments(args):
parser = argparse.ArgumentParser(description='tSNE on audio')
parser.add_argument('--images_path', action='store', help='path to directory of images')
parser.add_argument('--output_path', action='store', help='path to where to put output json file')
parser.add_argument('--num_dimensions', action='store', default=2, help='dimensionality of t-SNE points (default 2)')
parser.add_argument('--perplexity', action='store', default=30, help='perplexity of t-SNE (default 30)')
parser.add_argument('--learning_rate', action='store', default=150, help='learning rate of t-SNE (default 150)')
params = vars(parser.parse_args(args))
return params

def get_image(path, input_shape):
img = image.load_img(path, target_size=input_shape)
x = image.img_to_array(img)
x = np.expand_dims(x, axis=0)
x = preprocess_input(x)
return x

def find_candidate_images(images_path):
"""
Finds all candidate images in the given folder and its sub-folders.
Returns:
images: a list of absolute paths to the discovered images.
"""
images =
for root, dirs, files in os.walk(images_path):
for name in files:
file_path = os.path.abspath(os.path.join(root, name))
if ((os.path.splitext(name)[1]).lower() in ['.jpg','.png','.jpeg']):
images.append(file_path)
return images

def analyze_images(images_path):
# make feature_extractor
model = keras.applications.VGG16(weights='imagenet', include_top=True)
feat_extractor = Model(inputs=model.input, outputs=model.get_layer("fc2").output)
input_shape = model.input_shape[1:3]
# get images
candidate_images = find_candidate_images(images_path)
# analyze images and grab activations
activations =
images =
for idx,image_path in enumerate(candidate_images):
file_path = join(images_path,image_path)
img = get_image(file_path, input_shape);
if img is not None:
print("getting activations for %s %d/%d" % (image_path,idx,len(candidate_images)))
acts = feat_extractor.predict(img)[0]
activations.append(acts)
images.append(image_path)
# run PCA firt
print("Running PCA on %d images..." % len(activations))
features = np.array(activations)
pca = PCA(n_components=300)
pca.fit(features)
pca_features = pca.transform(features)
return images, pca_features

def run_tsne(images_path, output_path, tsne_dimensions, tsne_perplexity, tsne_learning_rate):
images, pca_features = analyze_images(images_path)
print("Running t-SNE on %d images..." % len(images))
X = np.array(pca_features)
tsne = TSNE(n_components=tsne_dimensions, learning_rate=tsne_learning_rate, perplexity=tsne_perplexity, verbose=2).fit_transform(X)
# save data to json
data =
for i,f in enumerate(images):
point = [float((tsne[i,k] - np.min(tsne[:,k]))/(np.max(tsne[:,k]) - np.min(tsne[:,k]))) for k in range(tsne_dimensions) ]
data.append({"path":os.path.abspath(join(images_path,images[i])), "point":point})
with open(output_path, 'w') as outfile:
json.dump(data, outfile)


if __name__ == '__main__':
params = process_arguments(sys.argv[1:])
images_path = params['images_path']
output_path = params['output_path']
tsne_dimensions = int(params['num_dimensions'])
tsne_perplexity = int(params['perplexity'])
tsne_learning_rate = int(params['learning_rate'])
run_tsne(images_path, output_path, tsne_dimensions, tsne_perplexity, tsne_learning_rate)
print("finished saving %s" % output_path)


from: https://github.com/ml4a/ml4a-ofx/blob/master/scripts/tSNE-images.py



Here is what I'm getting:



    Traceback (most recent call last):
File "tSNE-images.py", line 95, in <module>
run_tsne(images_path, output_path, tsne_dimensions, tsne_perplexity, tsne_learning_rate)
File "tSNE-images.py", line 75, in run_tsne
images, pca_features = analyze_images(images_path)
File "tSNE-images.py", line 50, in analyze_images
feat_extractor = Model(inputs=model.input, outputs=model.get_layer("fc2").output)
File "/Users/.../anaconda3/lib/python3.6/site-packages/keras/legacy/interfaces.py", line 91, in wrapper
return func(*args, **kwargs)
File "/Users/.../anaconda3/lib/python3.6/site-packages/keras/engine/network.py", line 91, in __init__
self._init_graph_network(*args, **kwargs)
File "/Users/.../anaconda3/lib/python3.6/site-packages/keras/engine/network.py", line 251, in _init_graph_network
input_shapes=[x._keras_shape for x in self.inputs],
File "/Users/.../anaconda3/lib/python3.6/site-packages/keras/engine/network.py", line 251, in <listcomp>
input_shapes=[x._keras_shape for x in self.inputs],
AttributeError: 'Tensor' object has no attribute '_keras_shape'


I found similar error in here:



`https://stackoverflow.com/questions/47616588/keras-throws-tensor-object-has-no-attribute-keras-shape-when-splitting-a`


However I can't seem to figure out how to go about updating code using Lambda. How can I solve this error?







python tensorflow keras






share|improve this question















share|improve this question













share|improve this question




share|improve this question








edited Nov 13 at 18:03

























asked Nov 13 at 16:28









user2300867

136216




136216












  • It would be best if you could make a minimal, complete and verifiable example where the errors shows up, instead of posting your complete program. Could you include the stack trace for the exception that you are seeing?
    – jdehesa
    Nov 13 at 17:17












  • @jdehesa I have updated with the stack trace. Thanks
    – user2300867
    Nov 13 at 18:04










  • @user2300867 Upgrade your Keras and Tensorflow and see if the error is resolved.
    – today
    Nov 15 at 18:57




















  • It would be best if you could make a minimal, complete and verifiable example where the errors shows up, instead of posting your complete program. Could you include the stack trace for the exception that you are seeing?
    – jdehesa
    Nov 13 at 17:17












  • @jdehesa I have updated with the stack trace. Thanks
    – user2300867
    Nov 13 at 18:04










  • @user2300867 Upgrade your Keras and Tensorflow and see if the error is resolved.
    – today
    Nov 15 at 18:57


















It would be best if you could make a minimal, complete and verifiable example where the errors shows up, instead of posting your complete program. Could you include the stack trace for the exception that you are seeing?
– jdehesa
Nov 13 at 17:17






It would be best if you could make a minimal, complete and verifiable example where the errors shows up, instead of posting your complete program. Could you include the stack trace for the exception that you are seeing?
– jdehesa
Nov 13 at 17:17














@jdehesa I have updated with the stack trace. Thanks
– user2300867
Nov 13 at 18:04




@jdehesa I have updated with the stack trace. Thanks
– user2300867
Nov 13 at 18:04












@user2300867 Upgrade your Keras and Tensorflow and see if the error is resolved.
– today
Nov 15 at 18:57






@user2300867 Upgrade your Keras and Tensorflow and see if the error is resolved.
– today
Nov 15 at 18:57














1 Answer
1






active

oldest

votes


















2














I followed @user2300867 suggestion and updated tensorflow with:



pip3 install --upgrade tensorflow-gpu


and updated keras to 2.2.4



pip install Keras==2.2.4


I still got error:



TypeError: expected str, bytes or os.PathLike object, not NoneType


but this was easy to fix by simply editing the code for local paths






share|improve this answer





















    Your Answer






    StackExchange.ifUsing("editor", function () {
    StackExchange.using("externalEditor", function () {
    StackExchange.using("snippets", function () {
    StackExchange.snippets.init();
    });
    });
    }, "code-snippets");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "1"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53285424%2fattributeerror-tensor-object-has-no-attribute-keras-shape%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    2














    I followed @user2300867 suggestion and updated tensorflow with:



    pip3 install --upgrade tensorflow-gpu


    and updated keras to 2.2.4



    pip install Keras==2.2.4


    I still got error:



    TypeError: expected str, bytes or os.PathLike object, not NoneType


    but this was easy to fix by simply editing the code for local paths






    share|improve this answer


























      2














      I followed @user2300867 suggestion and updated tensorflow with:



      pip3 install --upgrade tensorflow-gpu


      and updated keras to 2.2.4



      pip install Keras==2.2.4


      I still got error:



      TypeError: expected str, bytes or os.PathLike object, not NoneType


      but this was easy to fix by simply editing the code for local paths






      share|improve this answer
























        2












        2








        2






        I followed @user2300867 suggestion and updated tensorflow with:



        pip3 install --upgrade tensorflow-gpu


        and updated keras to 2.2.4



        pip install Keras==2.2.4


        I still got error:



        TypeError: expected str, bytes or os.PathLike object, not NoneType


        but this was easy to fix by simply editing the code for local paths






        share|improve this answer












        I followed @user2300867 suggestion and updated tensorflow with:



        pip3 install --upgrade tensorflow-gpu


        and updated keras to 2.2.4



        pip install Keras==2.2.4


        I still got error:



        TypeError: expected str, bytes or os.PathLike object, not NoneType


        but this was easy to fix by simply editing the code for local paths







        share|improve this answer












        share|improve this answer



        share|improve this answer










        answered Nov 16 at 15:49









        user2300867

        136216




        136216






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Stack Overflow!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            To learn more, see our tips on writing great answers.





            Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


            Please pay close attention to the following guidance:


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53285424%2fattributeerror-tensor-object-has-no-attribute-keras-shape%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Guess what letter conforming each word

            Run scheduled task as local user group (not BUILTIN)

            Port of Spain