Python worker failed to connect back
up vote
0
down vote
favorite
I'm a newby with Spark and trying to complete a Spark tutorial:
link to tutorial
After installing it on local machine (Win10 64, Python 3, Spark 2.4.0) and setting all env variables (HADOOP_HOME, SPARK_HOME etc) I'm trying to run a simple Spark job via WordCount.py file:
from pyspark import SparkContext, SparkConf
if __name__ == "__main__":
conf = SparkConf().setAppName("word count").setMaster("local[2]")
sc = SparkContext(conf = conf)
lines = sc.textFile("C:/Users/mjdbr/Documents/BigData/python-spark-tutorial/in/word_count.text")
words = lines.flatMap(lambda line: line.split(" "))
wordCounts = words.countByValue()
for word, count in wordCounts.items():
print("{} : {}".format(word, count))
After running it from terminal:
spark-submit WordCount.py
I get below error.
I checked (by commenting out line by line) that it crashes at
wordCounts = words.countByValue()
Any idea what should I check to make it work?
Traceback (most recent call last):
File "C:UsersmjdbrAnaconda3librunpy.py", line 193, in _run_module_as_main
"__main__", mod_spec)
File "C:UsersmjdbrAnaconda3librunpy.py", line 85, in _run_code
exec(code, run_globals)
File "C:Sparkspark-2.4.0-bin-hadoop2.7pythonlibpyspark.zippysparkworker.py", line 25, in <module>
ModuleNotFoundError: No module named 'resource'
18/11/10 23:16:58 ERROR Executor: Exception in task 0.0 in stage 0.0 (TID 0)
org.apache.spark.SparkException: Python worker failed to connect back.
at org.apache.spark.api.python.PythonWorkerFactory.createSimpleWorker(PythonWorkerFactory.scala:170)
at org.apache.spark.api.python.PythonWorkerFactory.create(PythonWorkerFactory.scala:97)
at org.apache.spark.SparkEnv.createPythonWorker(SparkEnv.scala:117)
at org.apache.spark.api.python.BasePythonRunner.compute(PythonRunner.scala:108)
at org.apache.spark.api.python.PythonRDD.compute(PythonRDD.scala:65)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:324)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:288)
at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:90)
at org.apache.spark.scheduler.Task.run(Task.scala:121)
at org.apache.spark.executor.Executor$TaskRunner$$anonfun$10.apply(Executor.scala:402)
at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:1360)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:408)
at java.util.concurrent.ThreadPoolExecutor.runWorker(Unknown Source)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(Unknown Source)
at java.lang.Thread.run(Unknown Source)
Caused by: java.net.SocketTimeoutException: Accept timed out
at java.net.DualStackPlainSocketImpl.waitForNewConnection(Native Method)
at java.net.DualStackPlainSocketImpl.socketAccept(Unknown Source)
at java.net.AbstractPlainSocketImpl.accept(Unknown Source)
at java.net.PlainSocketImpl.accept(Unknown Source)
at java.net.ServerSocket.implAccept(Unknown Source)
at java.net.ServerSocket.accept(Unknown Source)
at org.apache.spark.api.python.PythonWorkerFactory.createSimpleWorker(PythonWorkerFactory.scala:164)
... 14 more
18/11/10 23:16:58 ERROR TaskSetManager: Task 0 in stage 0.0 failed 1 times; aborting job
Traceback (most recent call last):
File "C:/Users/mjdbr/Documents/BigData/python-spark-tutorial/rdd/WordCount.py", line 19, in <module>
wordCounts = words.countByValue()
File "C:Sparkspark-2.4.0-bin-hadoop2.7pythonlibpyspark.zippysparkrdd.py", line 1261, in countByValue
File "C:Sparkspark-2.4.0-bin-hadoop2.7pythonlibpyspark.zippysparkrdd.py", line 844, in reduce
File "C:Sparkspark-2.4.0-bin-hadoop2.7pythonlibpyspark.zippysparkrdd.py", line 816, in collect
File "C:Sparkspark-2.4.0-bin-hadoop2.7pythonlibpy4j-0.10.7-src.zippy4jjava_gateway.py", line 1257, in __call__
File "C:Sparkspark-2.4.0-bin-hadoop2.7pythonlibpy4j-0.10.7-src.zippy4jprotocol.py", line 328, in get_return_value
py4j.protocol.Py4JJavaError: An error occurred while calling z:org.apache.spark.api.python.PythonRDD.collectAndServe.
: org.apache.spark.SparkException: Job aborted due to stage failure: Task 0 in stage 0.0 failed 1 times, most recent failure:
Lost task 0.0 in stage 0.0 (TID 0, localhost, executor driver): org.apache.spark.SparkException: Python worker failed to connect back.
at org.apache.spark.api.python.PythonWorkerFactory.createSimpleWorker(PythonWorkerFactory.scala:170)
at org.apache.spark.api.python.PythonWorkerFactory.create(PythonWorkerFactory.scala:97)
at org.apache.spark.SparkEnv.createPythonWorker(SparkEnv.scala:117)
at org.apache.spark.api.python.BasePythonRunner.compute(PythonRunner.scala:108)
at org.apache.spark.api.python.PythonRDD.compute(PythonRDD.scala:65)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:324)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:288)
at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:90)
at org.apache.spark.scheduler.Task.run(Task.scala:121)
at org.apache.spark.executor.Executor$TaskRunner$$anonfun$10.apply(Executor.scala:402)
at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:1360)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:408)
at java.util.concurrent.ThreadPoolExecutor.runWorker(Unknown Source)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(Unknown Source)
at java.lang.Thread.run(Unknown Source)
Caused by: java.net.SocketTimeoutException: Accept timed out
at java.net.DualStackPlainSocketImpl.waitForNewConnection(Native Method)
at java.net.DualStackPlainSocketImpl.socketAccept(Unknown Source)
at java.net.AbstractPlainSocketImpl.accept(Unknown Source)
at java.net.PlainSocketImpl.accept(Unknown Source)
at java.net.ServerSocket.implAccept(Unknown Source)
at java.net.ServerSocket.accept(Unknown Source)
at org.apache.spark.api.python.PythonWorkerFactory.createSimpleWorker(PythonWorkerFactory.scala:164)
... 14 more
Driver stacktrace:
at org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:1887)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1875)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1874)
at scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:48)
at org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1874)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:926)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:926)
at scala.Option.foreach(Option.scala:257)
at org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:926)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:2108)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:2057)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:2046)
at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:49)
at org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:737)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:2061)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:2082)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:2101)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:2126)
at org.apache.spark.rdd.RDD$$anonfun$collect$1.apply(RDD.scala:945)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:112)
at org.apache.spark.rdd.RDD.withScope(RDD.scala:363)
at org.apache.spark.rdd.RDD.collect(RDD.scala:944)
at org.apache.spark.api.python.PythonRDD$.collectAndServe(PythonRDD.scala:166)
at org.apache.spark.api.python.PythonRDD.collectAndServe(PythonRDD.scala)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(Unknown Source)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(Unknown Source)
at java.lang.reflect.Method.invoke(Unknown Source)
at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:244)
at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:357)
at py4j.Gateway.invoke(Gateway.java:282)
at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:132)
at py4j.commands.CallCommand.execute(CallCommand.java:79)
at py4j.GatewayConnection.run(GatewayConnection.java:238)
at java.lang.Thread.run(Unknown Source)
Caused by: org.apache.spark.SparkException: Python worker failed to connect back.
at org.apache.spark.api.python.PythonWorkerFactory.createSimpleWorker(PythonWorkerFactory.scala:170)
at org.apache.spark.api.python.PythonWorkerFactory.create(PythonWorkerFactory.scala:97)
at org.apache.spark.SparkEnv.createPythonWorker(SparkEnv.scala:117)
at org.apache.spark.api.python.BasePythonRunner.compute(PythonRunner.scala:108)
at org.apache.spark.api.python.PythonRDD.compute(PythonRDD.scala:65)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:324)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:288)
at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:90)
at org.apache.spark.scheduler.Task.run(Task.scala:121)
at org.apache.spark.executor.Executor$TaskRunner$$anonfun$10.apply(Executor.scala:402)
at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:1360)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:408)
at java.util.concurrent.ThreadPoolExecutor.runWorker(Unknown Source)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(Unknown Source)
... 1 more
Caused by: java.net.SocketTimeoutException: Accept timed out
at java.net.DualStackPlainSocketImpl.waitForNewConnection(Native Method)
at java.net.DualStackPlainSocketImpl.socketAccept(Unknown Source)
at java.net.AbstractPlainSocketImpl.accept(Unknown Source)
at java.net.PlainSocketImpl.accept(Unknown Source)
at java.net.ServerSocket.implAccept(Unknown Source)
at java.net.ServerSocket.accept(Unknown Source)
at org.apache.spark.api.python.PythonWorkerFactory.createSimpleWorker(PythonWorkerFactory.scala:164)
... 14 more
As suggested by theplatypus - checked if the 'resource' module can be imported directly from terminal - apparently not:
>>> import resource
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
ModuleNotFoundError: No module named 'resource'
In terms of installation resources - I followed instructions from this tutorial:
- downloaded spark-2.4.0-bin-hadoop2.7.tgz from Apache Spark website
- un-zipped it to my C-drive
- already had Python_3 installed (Anaconda distribution) as well as Java
- created local 'C:hadoopbin' folder to store winutils.exe
- created 'C:tmphive' folder and gave Spark access to it
- added environment variables (SPARK_HOME, HADOOP_HOME etc)
Is there any extra resource I should install?
python windows apache-spark pyspark local
add a comment |
up vote
0
down vote
favorite
I'm a newby with Spark and trying to complete a Spark tutorial:
link to tutorial
After installing it on local machine (Win10 64, Python 3, Spark 2.4.0) and setting all env variables (HADOOP_HOME, SPARK_HOME etc) I'm trying to run a simple Spark job via WordCount.py file:
from pyspark import SparkContext, SparkConf
if __name__ == "__main__":
conf = SparkConf().setAppName("word count").setMaster("local[2]")
sc = SparkContext(conf = conf)
lines = sc.textFile("C:/Users/mjdbr/Documents/BigData/python-spark-tutorial/in/word_count.text")
words = lines.flatMap(lambda line: line.split(" "))
wordCounts = words.countByValue()
for word, count in wordCounts.items():
print("{} : {}".format(word, count))
After running it from terminal:
spark-submit WordCount.py
I get below error.
I checked (by commenting out line by line) that it crashes at
wordCounts = words.countByValue()
Any idea what should I check to make it work?
Traceback (most recent call last):
File "C:UsersmjdbrAnaconda3librunpy.py", line 193, in _run_module_as_main
"__main__", mod_spec)
File "C:UsersmjdbrAnaconda3librunpy.py", line 85, in _run_code
exec(code, run_globals)
File "C:Sparkspark-2.4.0-bin-hadoop2.7pythonlibpyspark.zippysparkworker.py", line 25, in <module>
ModuleNotFoundError: No module named 'resource'
18/11/10 23:16:58 ERROR Executor: Exception in task 0.0 in stage 0.0 (TID 0)
org.apache.spark.SparkException: Python worker failed to connect back.
at org.apache.spark.api.python.PythonWorkerFactory.createSimpleWorker(PythonWorkerFactory.scala:170)
at org.apache.spark.api.python.PythonWorkerFactory.create(PythonWorkerFactory.scala:97)
at org.apache.spark.SparkEnv.createPythonWorker(SparkEnv.scala:117)
at org.apache.spark.api.python.BasePythonRunner.compute(PythonRunner.scala:108)
at org.apache.spark.api.python.PythonRDD.compute(PythonRDD.scala:65)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:324)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:288)
at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:90)
at org.apache.spark.scheduler.Task.run(Task.scala:121)
at org.apache.spark.executor.Executor$TaskRunner$$anonfun$10.apply(Executor.scala:402)
at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:1360)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:408)
at java.util.concurrent.ThreadPoolExecutor.runWorker(Unknown Source)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(Unknown Source)
at java.lang.Thread.run(Unknown Source)
Caused by: java.net.SocketTimeoutException: Accept timed out
at java.net.DualStackPlainSocketImpl.waitForNewConnection(Native Method)
at java.net.DualStackPlainSocketImpl.socketAccept(Unknown Source)
at java.net.AbstractPlainSocketImpl.accept(Unknown Source)
at java.net.PlainSocketImpl.accept(Unknown Source)
at java.net.ServerSocket.implAccept(Unknown Source)
at java.net.ServerSocket.accept(Unknown Source)
at org.apache.spark.api.python.PythonWorkerFactory.createSimpleWorker(PythonWorkerFactory.scala:164)
... 14 more
18/11/10 23:16:58 ERROR TaskSetManager: Task 0 in stage 0.0 failed 1 times; aborting job
Traceback (most recent call last):
File "C:/Users/mjdbr/Documents/BigData/python-spark-tutorial/rdd/WordCount.py", line 19, in <module>
wordCounts = words.countByValue()
File "C:Sparkspark-2.4.0-bin-hadoop2.7pythonlibpyspark.zippysparkrdd.py", line 1261, in countByValue
File "C:Sparkspark-2.4.0-bin-hadoop2.7pythonlibpyspark.zippysparkrdd.py", line 844, in reduce
File "C:Sparkspark-2.4.0-bin-hadoop2.7pythonlibpyspark.zippysparkrdd.py", line 816, in collect
File "C:Sparkspark-2.4.0-bin-hadoop2.7pythonlibpy4j-0.10.7-src.zippy4jjava_gateway.py", line 1257, in __call__
File "C:Sparkspark-2.4.0-bin-hadoop2.7pythonlibpy4j-0.10.7-src.zippy4jprotocol.py", line 328, in get_return_value
py4j.protocol.Py4JJavaError: An error occurred while calling z:org.apache.spark.api.python.PythonRDD.collectAndServe.
: org.apache.spark.SparkException: Job aborted due to stage failure: Task 0 in stage 0.0 failed 1 times, most recent failure:
Lost task 0.0 in stage 0.0 (TID 0, localhost, executor driver): org.apache.spark.SparkException: Python worker failed to connect back.
at org.apache.spark.api.python.PythonWorkerFactory.createSimpleWorker(PythonWorkerFactory.scala:170)
at org.apache.spark.api.python.PythonWorkerFactory.create(PythonWorkerFactory.scala:97)
at org.apache.spark.SparkEnv.createPythonWorker(SparkEnv.scala:117)
at org.apache.spark.api.python.BasePythonRunner.compute(PythonRunner.scala:108)
at org.apache.spark.api.python.PythonRDD.compute(PythonRDD.scala:65)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:324)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:288)
at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:90)
at org.apache.spark.scheduler.Task.run(Task.scala:121)
at org.apache.spark.executor.Executor$TaskRunner$$anonfun$10.apply(Executor.scala:402)
at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:1360)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:408)
at java.util.concurrent.ThreadPoolExecutor.runWorker(Unknown Source)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(Unknown Source)
at java.lang.Thread.run(Unknown Source)
Caused by: java.net.SocketTimeoutException: Accept timed out
at java.net.DualStackPlainSocketImpl.waitForNewConnection(Native Method)
at java.net.DualStackPlainSocketImpl.socketAccept(Unknown Source)
at java.net.AbstractPlainSocketImpl.accept(Unknown Source)
at java.net.PlainSocketImpl.accept(Unknown Source)
at java.net.ServerSocket.implAccept(Unknown Source)
at java.net.ServerSocket.accept(Unknown Source)
at org.apache.spark.api.python.PythonWorkerFactory.createSimpleWorker(PythonWorkerFactory.scala:164)
... 14 more
Driver stacktrace:
at org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:1887)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1875)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1874)
at scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:48)
at org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1874)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:926)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:926)
at scala.Option.foreach(Option.scala:257)
at org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:926)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:2108)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:2057)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:2046)
at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:49)
at org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:737)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:2061)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:2082)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:2101)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:2126)
at org.apache.spark.rdd.RDD$$anonfun$collect$1.apply(RDD.scala:945)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:112)
at org.apache.spark.rdd.RDD.withScope(RDD.scala:363)
at org.apache.spark.rdd.RDD.collect(RDD.scala:944)
at org.apache.spark.api.python.PythonRDD$.collectAndServe(PythonRDD.scala:166)
at org.apache.spark.api.python.PythonRDD.collectAndServe(PythonRDD.scala)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(Unknown Source)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(Unknown Source)
at java.lang.reflect.Method.invoke(Unknown Source)
at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:244)
at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:357)
at py4j.Gateway.invoke(Gateway.java:282)
at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:132)
at py4j.commands.CallCommand.execute(CallCommand.java:79)
at py4j.GatewayConnection.run(GatewayConnection.java:238)
at java.lang.Thread.run(Unknown Source)
Caused by: org.apache.spark.SparkException: Python worker failed to connect back.
at org.apache.spark.api.python.PythonWorkerFactory.createSimpleWorker(PythonWorkerFactory.scala:170)
at org.apache.spark.api.python.PythonWorkerFactory.create(PythonWorkerFactory.scala:97)
at org.apache.spark.SparkEnv.createPythonWorker(SparkEnv.scala:117)
at org.apache.spark.api.python.BasePythonRunner.compute(PythonRunner.scala:108)
at org.apache.spark.api.python.PythonRDD.compute(PythonRDD.scala:65)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:324)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:288)
at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:90)
at org.apache.spark.scheduler.Task.run(Task.scala:121)
at org.apache.spark.executor.Executor$TaskRunner$$anonfun$10.apply(Executor.scala:402)
at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:1360)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:408)
at java.util.concurrent.ThreadPoolExecutor.runWorker(Unknown Source)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(Unknown Source)
... 1 more
Caused by: java.net.SocketTimeoutException: Accept timed out
at java.net.DualStackPlainSocketImpl.waitForNewConnection(Native Method)
at java.net.DualStackPlainSocketImpl.socketAccept(Unknown Source)
at java.net.AbstractPlainSocketImpl.accept(Unknown Source)
at java.net.PlainSocketImpl.accept(Unknown Source)
at java.net.ServerSocket.implAccept(Unknown Source)
at java.net.ServerSocket.accept(Unknown Source)
at org.apache.spark.api.python.PythonWorkerFactory.createSimpleWorker(PythonWorkerFactory.scala:164)
... 14 more
As suggested by theplatypus - checked if the 'resource' module can be imported directly from terminal - apparently not:
>>> import resource
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
ModuleNotFoundError: No module named 'resource'
In terms of installation resources - I followed instructions from this tutorial:
- downloaded spark-2.4.0-bin-hadoop2.7.tgz from Apache Spark website
- un-zipped it to my C-drive
- already had Python_3 installed (Anaconda distribution) as well as Java
- created local 'C:hadoopbin' folder to store winutils.exe
- created 'C:tmphive' folder and gave Spark access to it
- added environment variables (SPARK_HOME, HADOOP_HOME etc)
Is there any extra resource I should install?
python windows apache-spark pyspark local
add a comment |
up vote
0
down vote
favorite
up vote
0
down vote
favorite
I'm a newby with Spark and trying to complete a Spark tutorial:
link to tutorial
After installing it on local machine (Win10 64, Python 3, Spark 2.4.0) and setting all env variables (HADOOP_HOME, SPARK_HOME etc) I'm trying to run a simple Spark job via WordCount.py file:
from pyspark import SparkContext, SparkConf
if __name__ == "__main__":
conf = SparkConf().setAppName("word count").setMaster("local[2]")
sc = SparkContext(conf = conf)
lines = sc.textFile("C:/Users/mjdbr/Documents/BigData/python-spark-tutorial/in/word_count.text")
words = lines.flatMap(lambda line: line.split(" "))
wordCounts = words.countByValue()
for word, count in wordCounts.items():
print("{} : {}".format(word, count))
After running it from terminal:
spark-submit WordCount.py
I get below error.
I checked (by commenting out line by line) that it crashes at
wordCounts = words.countByValue()
Any idea what should I check to make it work?
Traceback (most recent call last):
File "C:UsersmjdbrAnaconda3librunpy.py", line 193, in _run_module_as_main
"__main__", mod_spec)
File "C:UsersmjdbrAnaconda3librunpy.py", line 85, in _run_code
exec(code, run_globals)
File "C:Sparkspark-2.4.0-bin-hadoop2.7pythonlibpyspark.zippysparkworker.py", line 25, in <module>
ModuleNotFoundError: No module named 'resource'
18/11/10 23:16:58 ERROR Executor: Exception in task 0.0 in stage 0.0 (TID 0)
org.apache.spark.SparkException: Python worker failed to connect back.
at org.apache.spark.api.python.PythonWorkerFactory.createSimpleWorker(PythonWorkerFactory.scala:170)
at org.apache.spark.api.python.PythonWorkerFactory.create(PythonWorkerFactory.scala:97)
at org.apache.spark.SparkEnv.createPythonWorker(SparkEnv.scala:117)
at org.apache.spark.api.python.BasePythonRunner.compute(PythonRunner.scala:108)
at org.apache.spark.api.python.PythonRDD.compute(PythonRDD.scala:65)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:324)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:288)
at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:90)
at org.apache.spark.scheduler.Task.run(Task.scala:121)
at org.apache.spark.executor.Executor$TaskRunner$$anonfun$10.apply(Executor.scala:402)
at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:1360)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:408)
at java.util.concurrent.ThreadPoolExecutor.runWorker(Unknown Source)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(Unknown Source)
at java.lang.Thread.run(Unknown Source)
Caused by: java.net.SocketTimeoutException: Accept timed out
at java.net.DualStackPlainSocketImpl.waitForNewConnection(Native Method)
at java.net.DualStackPlainSocketImpl.socketAccept(Unknown Source)
at java.net.AbstractPlainSocketImpl.accept(Unknown Source)
at java.net.PlainSocketImpl.accept(Unknown Source)
at java.net.ServerSocket.implAccept(Unknown Source)
at java.net.ServerSocket.accept(Unknown Source)
at org.apache.spark.api.python.PythonWorkerFactory.createSimpleWorker(PythonWorkerFactory.scala:164)
... 14 more
18/11/10 23:16:58 ERROR TaskSetManager: Task 0 in stage 0.0 failed 1 times; aborting job
Traceback (most recent call last):
File "C:/Users/mjdbr/Documents/BigData/python-spark-tutorial/rdd/WordCount.py", line 19, in <module>
wordCounts = words.countByValue()
File "C:Sparkspark-2.4.0-bin-hadoop2.7pythonlibpyspark.zippysparkrdd.py", line 1261, in countByValue
File "C:Sparkspark-2.4.0-bin-hadoop2.7pythonlibpyspark.zippysparkrdd.py", line 844, in reduce
File "C:Sparkspark-2.4.0-bin-hadoop2.7pythonlibpyspark.zippysparkrdd.py", line 816, in collect
File "C:Sparkspark-2.4.0-bin-hadoop2.7pythonlibpy4j-0.10.7-src.zippy4jjava_gateway.py", line 1257, in __call__
File "C:Sparkspark-2.4.0-bin-hadoop2.7pythonlibpy4j-0.10.7-src.zippy4jprotocol.py", line 328, in get_return_value
py4j.protocol.Py4JJavaError: An error occurred while calling z:org.apache.spark.api.python.PythonRDD.collectAndServe.
: org.apache.spark.SparkException: Job aborted due to stage failure: Task 0 in stage 0.0 failed 1 times, most recent failure:
Lost task 0.0 in stage 0.0 (TID 0, localhost, executor driver): org.apache.spark.SparkException: Python worker failed to connect back.
at org.apache.spark.api.python.PythonWorkerFactory.createSimpleWorker(PythonWorkerFactory.scala:170)
at org.apache.spark.api.python.PythonWorkerFactory.create(PythonWorkerFactory.scala:97)
at org.apache.spark.SparkEnv.createPythonWorker(SparkEnv.scala:117)
at org.apache.spark.api.python.BasePythonRunner.compute(PythonRunner.scala:108)
at org.apache.spark.api.python.PythonRDD.compute(PythonRDD.scala:65)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:324)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:288)
at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:90)
at org.apache.spark.scheduler.Task.run(Task.scala:121)
at org.apache.spark.executor.Executor$TaskRunner$$anonfun$10.apply(Executor.scala:402)
at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:1360)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:408)
at java.util.concurrent.ThreadPoolExecutor.runWorker(Unknown Source)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(Unknown Source)
at java.lang.Thread.run(Unknown Source)
Caused by: java.net.SocketTimeoutException: Accept timed out
at java.net.DualStackPlainSocketImpl.waitForNewConnection(Native Method)
at java.net.DualStackPlainSocketImpl.socketAccept(Unknown Source)
at java.net.AbstractPlainSocketImpl.accept(Unknown Source)
at java.net.PlainSocketImpl.accept(Unknown Source)
at java.net.ServerSocket.implAccept(Unknown Source)
at java.net.ServerSocket.accept(Unknown Source)
at org.apache.spark.api.python.PythonWorkerFactory.createSimpleWorker(PythonWorkerFactory.scala:164)
... 14 more
Driver stacktrace:
at org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:1887)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1875)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1874)
at scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:48)
at org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1874)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:926)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:926)
at scala.Option.foreach(Option.scala:257)
at org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:926)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:2108)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:2057)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:2046)
at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:49)
at org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:737)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:2061)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:2082)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:2101)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:2126)
at org.apache.spark.rdd.RDD$$anonfun$collect$1.apply(RDD.scala:945)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:112)
at org.apache.spark.rdd.RDD.withScope(RDD.scala:363)
at org.apache.spark.rdd.RDD.collect(RDD.scala:944)
at org.apache.spark.api.python.PythonRDD$.collectAndServe(PythonRDD.scala:166)
at org.apache.spark.api.python.PythonRDD.collectAndServe(PythonRDD.scala)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(Unknown Source)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(Unknown Source)
at java.lang.reflect.Method.invoke(Unknown Source)
at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:244)
at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:357)
at py4j.Gateway.invoke(Gateway.java:282)
at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:132)
at py4j.commands.CallCommand.execute(CallCommand.java:79)
at py4j.GatewayConnection.run(GatewayConnection.java:238)
at java.lang.Thread.run(Unknown Source)
Caused by: org.apache.spark.SparkException: Python worker failed to connect back.
at org.apache.spark.api.python.PythonWorkerFactory.createSimpleWorker(PythonWorkerFactory.scala:170)
at org.apache.spark.api.python.PythonWorkerFactory.create(PythonWorkerFactory.scala:97)
at org.apache.spark.SparkEnv.createPythonWorker(SparkEnv.scala:117)
at org.apache.spark.api.python.BasePythonRunner.compute(PythonRunner.scala:108)
at org.apache.spark.api.python.PythonRDD.compute(PythonRDD.scala:65)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:324)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:288)
at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:90)
at org.apache.spark.scheduler.Task.run(Task.scala:121)
at org.apache.spark.executor.Executor$TaskRunner$$anonfun$10.apply(Executor.scala:402)
at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:1360)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:408)
at java.util.concurrent.ThreadPoolExecutor.runWorker(Unknown Source)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(Unknown Source)
... 1 more
Caused by: java.net.SocketTimeoutException: Accept timed out
at java.net.DualStackPlainSocketImpl.waitForNewConnection(Native Method)
at java.net.DualStackPlainSocketImpl.socketAccept(Unknown Source)
at java.net.AbstractPlainSocketImpl.accept(Unknown Source)
at java.net.PlainSocketImpl.accept(Unknown Source)
at java.net.ServerSocket.implAccept(Unknown Source)
at java.net.ServerSocket.accept(Unknown Source)
at org.apache.spark.api.python.PythonWorkerFactory.createSimpleWorker(PythonWorkerFactory.scala:164)
... 14 more
As suggested by theplatypus - checked if the 'resource' module can be imported directly from terminal - apparently not:
>>> import resource
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
ModuleNotFoundError: No module named 'resource'
In terms of installation resources - I followed instructions from this tutorial:
- downloaded spark-2.4.0-bin-hadoop2.7.tgz from Apache Spark website
- un-zipped it to my C-drive
- already had Python_3 installed (Anaconda distribution) as well as Java
- created local 'C:hadoopbin' folder to store winutils.exe
- created 'C:tmphive' folder and gave Spark access to it
- added environment variables (SPARK_HOME, HADOOP_HOME etc)
Is there any extra resource I should install?
python windows apache-spark pyspark local
I'm a newby with Spark and trying to complete a Spark tutorial:
link to tutorial
After installing it on local machine (Win10 64, Python 3, Spark 2.4.0) and setting all env variables (HADOOP_HOME, SPARK_HOME etc) I'm trying to run a simple Spark job via WordCount.py file:
from pyspark import SparkContext, SparkConf
if __name__ == "__main__":
conf = SparkConf().setAppName("word count").setMaster("local[2]")
sc = SparkContext(conf = conf)
lines = sc.textFile("C:/Users/mjdbr/Documents/BigData/python-spark-tutorial/in/word_count.text")
words = lines.flatMap(lambda line: line.split(" "))
wordCounts = words.countByValue()
for word, count in wordCounts.items():
print("{} : {}".format(word, count))
After running it from terminal:
spark-submit WordCount.py
I get below error.
I checked (by commenting out line by line) that it crashes at
wordCounts = words.countByValue()
Any idea what should I check to make it work?
Traceback (most recent call last):
File "C:UsersmjdbrAnaconda3librunpy.py", line 193, in _run_module_as_main
"__main__", mod_spec)
File "C:UsersmjdbrAnaconda3librunpy.py", line 85, in _run_code
exec(code, run_globals)
File "C:Sparkspark-2.4.0-bin-hadoop2.7pythonlibpyspark.zippysparkworker.py", line 25, in <module>
ModuleNotFoundError: No module named 'resource'
18/11/10 23:16:58 ERROR Executor: Exception in task 0.0 in stage 0.0 (TID 0)
org.apache.spark.SparkException: Python worker failed to connect back.
at org.apache.spark.api.python.PythonWorkerFactory.createSimpleWorker(PythonWorkerFactory.scala:170)
at org.apache.spark.api.python.PythonWorkerFactory.create(PythonWorkerFactory.scala:97)
at org.apache.spark.SparkEnv.createPythonWorker(SparkEnv.scala:117)
at org.apache.spark.api.python.BasePythonRunner.compute(PythonRunner.scala:108)
at org.apache.spark.api.python.PythonRDD.compute(PythonRDD.scala:65)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:324)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:288)
at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:90)
at org.apache.spark.scheduler.Task.run(Task.scala:121)
at org.apache.spark.executor.Executor$TaskRunner$$anonfun$10.apply(Executor.scala:402)
at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:1360)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:408)
at java.util.concurrent.ThreadPoolExecutor.runWorker(Unknown Source)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(Unknown Source)
at java.lang.Thread.run(Unknown Source)
Caused by: java.net.SocketTimeoutException: Accept timed out
at java.net.DualStackPlainSocketImpl.waitForNewConnection(Native Method)
at java.net.DualStackPlainSocketImpl.socketAccept(Unknown Source)
at java.net.AbstractPlainSocketImpl.accept(Unknown Source)
at java.net.PlainSocketImpl.accept(Unknown Source)
at java.net.ServerSocket.implAccept(Unknown Source)
at java.net.ServerSocket.accept(Unknown Source)
at org.apache.spark.api.python.PythonWorkerFactory.createSimpleWorker(PythonWorkerFactory.scala:164)
... 14 more
18/11/10 23:16:58 ERROR TaskSetManager: Task 0 in stage 0.0 failed 1 times; aborting job
Traceback (most recent call last):
File "C:/Users/mjdbr/Documents/BigData/python-spark-tutorial/rdd/WordCount.py", line 19, in <module>
wordCounts = words.countByValue()
File "C:Sparkspark-2.4.0-bin-hadoop2.7pythonlibpyspark.zippysparkrdd.py", line 1261, in countByValue
File "C:Sparkspark-2.4.0-bin-hadoop2.7pythonlibpyspark.zippysparkrdd.py", line 844, in reduce
File "C:Sparkspark-2.4.0-bin-hadoop2.7pythonlibpyspark.zippysparkrdd.py", line 816, in collect
File "C:Sparkspark-2.4.0-bin-hadoop2.7pythonlibpy4j-0.10.7-src.zippy4jjava_gateway.py", line 1257, in __call__
File "C:Sparkspark-2.4.0-bin-hadoop2.7pythonlibpy4j-0.10.7-src.zippy4jprotocol.py", line 328, in get_return_value
py4j.protocol.Py4JJavaError: An error occurred while calling z:org.apache.spark.api.python.PythonRDD.collectAndServe.
: org.apache.spark.SparkException: Job aborted due to stage failure: Task 0 in stage 0.0 failed 1 times, most recent failure:
Lost task 0.0 in stage 0.0 (TID 0, localhost, executor driver): org.apache.spark.SparkException: Python worker failed to connect back.
at org.apache.spark.api.python.PythonWorkerFactory.createSimpleWorker(PythonWorkerFactory.scala:170)
at org.apache.spark.api.python.PythonWorkerFactory.create(PythonWorkerFactory.scala:97)
at org.apache.spark.SparkEnv.createPythonWorker(SparkEnv.scala:117)
at org.apache.spark.api.python.BasePythonRunner.compute(PythonRunner.scala:108)
at org.apache.spark.api.python.PythonRDD.compute(PythonRDD.scala:65)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:324)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:288)
at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:90)
at org.apache.spark.scheduler.Task.run(Task.scala:121)
at org.apache.spark.executor.Executor$TaskRunner$$anonfun$10.apply(Executor.scala:402)
at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:1360)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:408)
at java.util.concurrent.ThreadPoolExecutor.runWorker(Unknown Source)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(Unknown Source)
at java.lang.Thread.run(Unknown Source)
Caused by: java.net.SocketTimeoutException: Accept timed out
at java.net.DualStackPlainSocketImpl.waitForNewConnection(Native Method)
at java.net.DualStackPlainSocketImpl.socketAccept(Unknown Source)
at java.net.AbstractPlainSocketImpl.accept(Unknown Source)
at java.net.PlainSocketImpl.accept(Unknown Source)
at java.net.ServerSocket.implAccept(Unknown Source)
at java.net.ServerSocket.accept(Unknown Source)
at org.apache.spark.api.python.PythonWorkerFactory.createSimpleWorker(PythonWorkerFactory.scala:164)
... 14 more
Driver stacktrace:
at org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:1887)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1875)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1874)
at scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:48)
at org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1874)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:926)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:926)
at scala.Option.foreach(Option.scala:257)
at org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:926)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:2108)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:2057)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:2046)
at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:49)
at org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:737)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:2061)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:2082)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:2101)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:2126)
at org.apache.spark.rdd.RDD$$anonfun$collect$1.apply(RDD.scala:945)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:112)
at org.apache.spark.rdd.RDD.withScope(RDD.scala:363)
at org.apache.spark.rdd.RDD.collect(RDD.scala:944)
at org.apache.spark.api.python.PythonRDD$.collectAndServe(PythonRDD.scala:166)
at org.apache.spark.api.python.PythonRDD.collectAndServe(PythonRDD.scala)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(Unknown Source)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(Unknown Source)
at java.lang.reflect.Method.invoke(Unknown Source)
at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:244)
at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:357)
at py4j.Gateway.invoke(Gateway.java:282)
at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:132)
at py4j.commands.CallCommand.execute(CallCommand.java:79)
at py4j.GatewayConnection.run(GatewayConnection.java:238)
at java.lang.Thread.run(Unknown Source)
Caused by: org.apache.spark.SparkException: Python worker failed to connect back.
at org.apache.spark.api.python.PythonWorkerFactory.createSimpleWorker(PythonWorkerFactory.scala:170)
at org.apache.spark.api.python.PythonWorkerFactory.create(PythonWorkerFactory.scala:97)
at org.apache.spark.SparkEnv.createPythonWorker(SparkEnv.scala:117)
at org.apache.spark.api.python.BasePythonRunner.compute(PythonRunner.scala:108)
at org.apache.spark.api.python.PythonRDD.compute(PythonRDD.scala:65)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:324)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:288)
at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:90)
at org.apache.spark.scheduler.Task.run(Task.scala:121)
at org.apache.spark.executor.Executor$TaskRunner$$anonfun$10.apply(Executor.scala:402)
at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:1360)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:408)
at java.util.concurrent.ThreadPoolExecutor.runWorker(Unknown Source)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(Unknown Source)
... 1 more
Caused by: java.net.SocketTimeoutException: Accept timed out
at java.net.DualStackPlainSocketImpl.waitForNewConnection(Native Method)
at java.net.DualStackPlainSocketImpl.socketAccept(Unknown Source)
at java.net.AbstractPlainSocketImpl.accept(Unknown Source)
at java.net.PlainSocketImpl.accept(Unknown Source)
at java.net.ServerSocket.implAccept(Unknown Source)
at java.net.ServerSocket.accept(Unknown Source)
at org.apache.spark.api.python.PythonWorkerFactory.createSimpleWorker(PythonWorkerFactory.scala:164)
... 14 more
As suggested by theplatypus - checked if the 'resource' module can be imported directly from terminal - apparently not:
>>> import resource
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
ModuleNotFoundError: No module named 'resource'
In terms of installation resources - I followed instructions from this tutorial:
- downloaded spark-2.4.0-bin-hadoop2.7.tgz from Apache Spark website
- un-zipped it to my C-drive
- already had Python_3 installed (Anaconda distribution) as well as Java
- created local 'C:hadoopbin' folder to store winutils.exe
- created 'C:tmphive' folder and gave Spark access to it
- added environment variables (SPARK_HOME, HADOOP_HOME etc)
Is there any extra resource I should install?
python windows apache-spark pyspark local
python windows apache-spark pyspark local
edited Nov 12 at 9:11
asked Nov 11 at 19:06
Mike D.
133
133
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
up vote
1
down vote
accepted
I got the same error. I solved it installing the previous version of Spark (2.3 instead of 2.4). Now it works perfectly, maybe it is an issue of the lastest version of pyspark.
Yes, that worked!
– Mike D.
Nov 12 at 22:48
add a comment |
up vote
0
down vote
Looking at the source of the error (worker.py#L25), it seems that the python interpreter used to instanciate a pyspark worker doesn't have access to the resource
module, a built-in module referred in Python's doc as part of "Unix Specific Services".
Are you sure you can run pyspark on Windows (without some additional software like GOW or MingW at least), and so that you didn't skip some Windows-specific installation steps ?
Could you open a python console (the one used by pyspark) and see if you can >>> import resource
without getting the same ModuleNotFoundError
? If you don't, then could you provide the ressources you used to install it on W10 ?
Hi, just edited original question, adding info you asked for.
– Mike D.
Nov 12 at 9:12
It seems the guy in the tutorial installed git before, and on Windows it might imply he installed as well some Unix compatibility package (Mingw). Maybe you could try to install git as well ?
– theplatypus
Nov 12 at 9:58
Otherwise, seeing this tuto, it seems you can resolve this using Gnu on windows (GOW)
– theplatypus
Nov 12 at 10:00
So I deleted Spark and re-installed it again using link you suggested. Same issue occurs (both with 'spark-submit' and 'import resource' line), even with GOW installed.
– Mike D.
Nov 12 at 18:46
Have you installed git (with bash tools) as well ?
– theplatypus
Nov 12 at 20:04
|
show 1 more comment
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
1
down vote
accepted
I got the same error. I solved it installing the previous version of Spark (2.3 instead of 2.4). Now it works perfectly, maybe it is an issue of the lastest version of pyspark.
Yes, that worked!
– Mike D.
Nov 12 at 22:48
add a comment |
up vote
1
down vote
accepted
I got the same error. I solved it installing the previous version of Spark (2.3 instead of 2.4). Now it works perfectly, maybe it is an issue of the lastest version of pyspark.
Yes, that worked!
– Mike D.
Nov 12 at 22:48
add a comment |
up vote
1
down vote
accepted
up vote
1
down vote
accepted
I got the same error. I solved it installing the previous version of Spark (2.3 instead of 2.4). Now it works perfectly, maybe it is an issue of the lastest version of pyspark.
I got the same error. I solved it installing the previous version of Spark (2.3 instead of 2.4). Now it works perfectly, maybe it is an issue of the lastest version of pyspark.
answered Nov 12 at 19:32
Raf
261
261
Yes, that worked!
– Mike D.
Nov 12 at 22:48
add a comment |
Yes, that worked!
– Mike D.
Nov 12 at 22:48
Yes, that worked!
– Mike D.
Nov 12 at 22:48
Yes, that worked!
– Mike D.
Nov 12 at 22:48
add a comment |
up vote
0
down vote
Looking at the source of the error (worker.py#L25), it seems that the python interpreter used to instanciate a pyspark worker doesn't have access to the resource
module, a built-in module referred in Python's doc as part of "Unix Specific Services".
Are you sure you can run pyspark on Windows (without some additional software like GOW or MingW at least), and so that you didn't skip some Windows-specific installation steps ?
Could you open a python console (the one used by pyspark) and see if you can >>> import resource
without getting the same ModuleNotFoundError
? If you don't, then could you provide the ressources you used to install it on W10 ?
Hi, just edited original question, adding info you asked for.
– Mike D.
Nov 12 at 9:12
It seems the guy in the tutorial installed git before, and on Windows it might imply he installed as well some Unix compatibility package (Mingw). Maybe you could try to install git as well ?
– theplatypus
Nov 12 at 9:58
Otherwise, seeing this tuto, it seems you can resolve this using Gnu on windows (GOW)
– theplatypus
Nov 12 at 10:00
So I deleted Spark and re-installed it again using link you suggested. Same issue occurs (both with 'spark-submit' and 'import resource' line), even with GOW installed.
– Mike D.
Nov 12 at 18:46
Have you installed git (with bash tools) as well ?
– theplatypus
Nov 12 at 20:04
|
show 1 more comment
up vote
0
down vote
Looking at the source of the error (worker.py#L25), it seems that the python interpreter used to instanciate a pyspark worker doesn't have access to the resource
module, a built-in module referred in Python's doc as part of "Unix Specific Services".
Are you sure you can run pyspark on Windows (without some additional software like GOW or MingW at least), and so that you didn't skip some Windows-specific installation steps ?
Could you open a python console (the one used by pyspark) and see if you can >>> import resource
without getting the same ModuleNotFoundError
? If you don't, then could you provide the ressources you used to install it on W10 ?
Hi, just edited original question, adding info you asked for.
– Mike D.
Nov 12 at 9:12
It seems the guy in the tutorial installed git before, and on Windows it might imply he installed as well some Unix compatibility package (Mingw). Maybe you could try to install git as well ?
– theplatypus
Nov 12 at 9:58
Otherwise, seeing this tuto, it seems you can resolve this using Gnu on windows (GOW)
– theplatypus
Nov 12 at 10:00
So I deleted Spark and re-installed it again using link you suggested. Same issue occurs (both with 'spark-submit' and 'import resource' line), even with GOW installed.
– Mike D.
Nov 12 at 18:46
Have you installed git (with bash tools) as well ?
– theplatypus
Nov 12 at 20:04
|
show 1 more comment
up vote
0
down vote
up vote
0
down vote
Looking at the source of the error (worker.py#L25), it seems that the python interpreter used to instanciate a pyspark worker doesn't have access to the resource
module, a built-in module referred in Python's doc as part of "Unix Specific Services".
Are you sure you can run pyspark on Windows (without some additional software like GOW or MingW at least), and so that you didn't skip some Windows-specific installation steps ?
Could you open a python console (the one used by pyspark) and see if you can >>> import resource
without getting the same ModuleNotFoundError
? If you don't, then could you provide the ressources you used to install it on W10 ?
Looking at the source of the error (worker.py#L25), it seems that the python interpreter used to instanciate a pyspark worker doesn't have access to the resource
module, a built-in module referred in Python's doc as part of "Unix Specific Services".
Are you sure you can run pyspark on Windows (without some additional software like GOW or MingW at least), and so that you didn't skip some Windows-specific installation steps ?
Could you open a python console (the one used by pyspark) and see if you can >>> import resource
without getting the same ModuleNotFoundError
? If you don't, then could you provide the ressources you used to install it on W10 ?
edited Nov 12 at 10:37
answered Nov 12 at 0:19
theplatypus
465
465
Hi, just edited original question, adding info you asked for.
– Mike D.
Nov 12 at 9:12
It seems the guy in the tutorial installed git before, and on Windows it might imply he installed as well some Unix compatibility package (Mingw). Maybe you could try to install git as well ?
– theplatypus
Nov 12 at 9:58
Otherwise, seeing this tuto, it seems you can resolve this using Gnu on windows (GOW)
– theplatypus
Nov 12 at 10:00
So I deleted Spark and re-installed it again using link you suggested. Same issue occurs (both with 'spark-submit' and 'import resource' line), even with GOW installed.
– Mike D.
Nov 12 at 18:46
Have you installed git (with bash tools) as well ?
– theplatypus
Nov 12 at 20:04
|
show 1 more comment
Hi, just edited original question, adding info you asked for.
– Mike D.
Nov 12 at 9:12
It seems the guy in the tutorial installed git before, and on Windows it might imply he installed as well some Unix compatibility package (Mingw). Maybe you could try to install git as well ?
– theplatypus
Nov 12 at 9:58
Otherwise, seeing this tuto, it seems you can resolve this using Gnu on windows (GOW)
– theplatypus
Nov 12 at 10:00
So I deleted Spark and re-installed it again using link you suggested. Same issue occurs (both with 'spark-submit' and 'import resource' line), even with GOW installed.
– Mike D.
Nov 12 at 18:46
Have you installed git (with bash tools) as well ?
– theplatypus
Nov 12 at 20:04
Hi, just edited original question, adding info you asked for.
– Mike D.
Nov 12 at 9:12
Hi, just edited original question, adding info you asked for.
– Mike D.
Nov 12 at 9:12
It seems the guy in the tutorial installed git before, and on Windows it might imply he installed as well some Unix compatibility package (Mingw). Maybe you could try to install git as well ?
– theplatypus
Nov 12 at 9:58
It seems the guy in the tutorial installed git before, and on Windows it might imply he installed as well some Unix compatibility package (Mingw). Maybe you could try to install git as well ?
– theplatypus
Nov 12 at 9:58
Otherwise, seeing this tuto, it seems you can resolve this using Gnu on windows (GOW)
– theplatypus
Nov 12 at 10:00
Otherwise, seeing this tuto, it seems you can resolve this using Gnu on windows (GOW)
– theplatypus
Nov 12 at 10:00
So I deleted Spark and re-installed it again using link you suggested. Same issue occurs (both with 'spark-submit' and 'import resource' line), even with GOW installed.
– Mike D.
Nov 12 at 18:46
So I deleted Spark and re-installed it again using link you suggested. Same issue occurs (both with 'spark-submit' and 'import resource' line), even with GOW installed.
– Mike D.
Nov 12 at 18:46
Have you installed git (with bash tools) as well ?
– theplatypus
Nov 12 at 20:04
Have you installed git (with bash tools) as well ?
– theplatypus
Nov 12 at 20:04
|
show 1 more comment
Thanks for contributing an answer to Stack Overflow!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53252181%2fpython-worker-failed-to-connect-back%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown