spark does not read all orc files from different folder using merge schema
I have three different orc files in three different folder, I want to read them all in to one data frame in one shot.
user1.orc at /data/user1/
+-------------------+--------------------+
| userid | name |
+-------------------+--------------------+
| 1 | aa |
| 6 | vv |
+-------------------+--------------------+
user2.orc at /data/user2/
+-------------------+--------------------+
| userid | info |
+-------------------+--------------------+
| 11 | i1 |
| 66 | i6 |
+-------------------+--------------------+
user3.orc at /data/user3/
+-------------------+--------------------+
| userid | con |
+-------------------+--------------------+
| 12 | 888 |
| 17 | 123 |
+-------------------+--------------------+
I want to read all these at once and have the dataframe like below
+-------------------+--------------------+--------------------+----------+
| userid | name | info | con |
+-------------------+--------------------+--------------------+----------+
| 1 | aa | null | null |
| 6 | vv | null | null |
| 11 | null | i1 | null |
| 66 | null | i6 | null |
| 12 | null | null | 888 |
| 17 | null | null | 123 |
so I used like this
val df =spark.read.option("mergeSchema","true").orc("file:///home/hadoop/data/")
but its giving the common column across all files
+-------------------+
| userid |
+-------------------+
| 1 |
| 6 |
| 11 |
| 66 |
| 12 |
| 17 |
So how to read all these three files in one shot ?
apache-spark apache-spark-sql orc
add a comment |
I have three different orc files in three different folder, I want to read them all in to one data frame in one shot.
user1.orc at /data/user1/
+-------------------+--------------------+
| userid | name |
+-------------------+--------------------+
| 1 | aa |
| 6 | vv |
+-------------------+--------------------+
user2.orc at /data/user2/
+-------------------+--------------------+
| userid | info |
+-------------------+--------------------+
| 11 | i1 |
| 66 | i6 |
+-------------------+--------------------+
user3.orc at /data/user3/
+-------------------+--------------------+
| userid | con |
+-------------------+--------------------+
| 12 | 888 |
| 17 | 123 |
+-------------------+--------------------+
I want to read all these at once and have the dataframe like below
+-------------------+--------------------+--------------------+----------+
| userid | name | info | con |
+-------------------+--------------------+--------------------+----------+
| 1 | aa | null | null |
| 6 | vv | null | null |
| 11 | null | i1 | null |
| 66 | null | i6 | null |
| 12 | null | null | 888 |
| 17 | null | null | 123 |
so I used like this
val df =spark.read.option("mergeSchema","true").orc("file:///home/hadoop/data/")
but its giving the common column across all files
+-------------------+
| userid |
+-------------------+
| 1 |
| 6 |
| 11 |
| 66 |
| 12 |
| 17 |
So how to read all these three files in one shot ?
apache-spark apache-spark-sql orc
add a comment |
I have three different orc files in three different folder, I want to read them all in to one data frame in one shot.
user1.orc at /data/user1/
+-------------------+--------------------+
| userid | name |
+-------------------+--------------------+
| 1 | aa |
| 6 | vv |
+-------------------+--------------------+
user2.orc at /data/user2/
+-------------------+--------------------+
| userid | info |
+-------------------+--------------------+
| 11 | i1 |
| 66 | i6 |
+-------------------+--------------------+
user3.orc at /data/user3/
+-------------------+--------------------+
| userid | con |
+-------------------+--------------------+
| 12 | 888 |
| 17 | 123 |
+-------------------+--------------------+
I want to read all these at once and have the dataframe like below
+-------------------+--------------------+--------------------+----------+
| userid | name | info | con |
+-------------------+--------------------+--------------------+----------+
| 1 | aa | null | null |
| 6 | vv | null | null |
| 11 | null | i1 | null |
| 66 | null | i6 | null |
| 12 | null | null | 888 |
| 17 | null | null | 123 |
so I used like this
val df =spark.read.option("mergeSchema","true").orc("file:///home/hadoop/data/")
but its giving the common column across all files
+-------------------+
| userid |
+-------------------+
| 1 |
| 6 |
| 11 |
| 66 |
| 12 |
| 17 |
So how to read all these three files in one shot ?
apache-spark apache-spark-sql orc
I have three different orc files in three different folder, I want to read them all in to one data frame in one shot.
user1.orc at /data/user1/
+-------------------+--------------------+
| userid | name |
+-------------------+--------------------+
| 1 | aa |
| 6 | vv |
+-------------------+--------------------+
user2.orc at /data/user2/
+-------------------+--------------------+
| userid | info |
+-------------------+--------------------+
| 11 | i1 |
| 66 | i6 |
+-------------------+--------------------+
user3.orc at /data/user3/
+-------------------+--------------------+
| userid | con |
+-------------------+--------------------+
| 12 | 888 |
| 17 | 123 |
+-------------------+--------------------+
I want to read all these at once and have the dataframe like below
+-------------------+--------------------+--------------------+----------+
| userid | name | info | con |
+-------------------+--------------------+--------------------+----------+
| 1 | aa | null | null |
| 6 | vv | null | null |
| 11 | null | i1 | null |
| 66 | null | i6 | null |
| 12 | null | null | 888 |
| 17 | null | null | 123 |
so I used like this
val df =spark.read.option("mergeSchema","true").orc("file:///home/hadoop/data/")
but its giving the common column across all files
+-------------------+
| userid |
+-------------------+
| 1 |
| 6 |
| 11 |
| 66 |
| 12 |
| 17 |
So how to read all these three files in one shot ?
apache-spark apache-spark-sql orc
apache-spark apache-spark-sql orc
asked Nov 14 '18 at 9:13
user3607698
311113
311113
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
I have a very stupid workaround for you, just in case if you don't find any solution.
Read all those files into different data frames and then perform a union operation, something like below:
val user1 = sparkSession.read.orc("/home/prasadkhode/data/user1/").toJSON
val user2 = sparkSession.read.orc("/home/prasadkhode/data/user2/").toJSON
val user3 = sparkSession.read.orc("/home/prasadkhode/data/user3/").toJSON
val result = sparkSession.read.json(user1.union(user2).union(user3).rdd)
result.printSchema()
result.show(false)
and the output will be:
root
|-- con: long (nullable = true)
|-- info: string (nullable = true)
|-- name: string (nullable = true)
|-- userId: long (nullable = true)
+----+----+----+------+
|con |info|name|userId|
+----+----+----+------+
|null|null|vv |6 |
|null|null|aa |1 |
|null|i6 |null|66 |
|null|i1 |null|11 |
|888 |null|null|12 |
|123 |null|null|17 |
+----+----+----+------+
Update:
Looks like there is no support for mergeSchema
for orc
data, there is an open ticket in Spark Jira
Actually my data is huge, each day data is almost 5GB, so will it become slow if I read each file individually and union them later ?
– user3607698
Nov 14 '18 at 10:29
yes, there will be a performance impact and this depends on the size of your cluster, the configuration parameters that you use and the resources that you allocate to your job etc...
– Prasad Khode
Nov 15 '18 at 7:03
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
StackExchange.using("externalEditor", function () {
StackExchange.using("snippets", function () {
StackExchange.snippets.init();
});
});
}, "code-snippets");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "1"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53296570%2fspark-does-not-read-all-orc-files-from-different-folder-using-merge-schema%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
I have a very stupid workaround for you, just in case if you don't find any solution.
Read all those files into different data frames and then perform a union operation, something like below:
val user1 = sparkSession.read.orc("/home/prasadkhode/data/user1/").toJSON
val user2 = sparkSession.read.orc("/home/prasadkhode/data/user2/").toJSON
val user3 = sparkSession.read.orc("/home/prasadkhode/data/user3/").toJSON
val result = sparkSession.read.json(user1.union(user2).union(user3).rdd)
result.printSchema()
result.show(false)
and the output will be:
root
|-- con: long (nullable = true)
|-- info: string (nullable = true)
|-- name: string (nullable = true)
|-- userId: long (nullable = true)
+----+----+----+------+
|con |info|name|userId|
+----+----+----+------+
|null|null|vv |6 |
|null|null|aa |1 |
|null|i6 |null|66 |
|null|i1 |null|11 |
|888 |null|null|12 |
|123 |null|null|17 |
+----+----+----+------+
Update:
Looks like there is no support for mergeSchema
for orc
data, there is an open ticket in Spark Jira
Actually my data is huge, each day data is almost 5GB, so will it become slow if I read each file individually and union them later ?
– user3607698
Nov 14 '18 at 10:29
yes, there will be a performance impact and this depends on the size of your cluster, the configuration parameters that you use and the resources that you allocate to your job etc...
– Prasad Khode
Nov 15 '18 at 7:03
add a comment |
I have a very stupid workaround for you, just in case if you don't find any solution.
Read all those files into different data frames and then perform a union operation, something like below:
val user1 = sparkSession.read.orc("/home/prasadkhode/data/user1/").toJSON
val user2 = sparkSession.read.orc("/home/prasadkhode/data/user2/").toJSON
val user3 = sparkSession.read.orc("/home/prasadkhode/data/user3/").toJSON
val result = sparkSession.read.json(user1.union(user2).union(user3).rdd)
result.printSchema()
result.show(false)
and the output will be:
root
|-- con: long (nullable = true)
|-- info: string (nullable = true)
|-- name: string (nullable = true)
|-- userId: long (nullable = true)
+----+----+----+------+
|con |info|name|userId|
+----+----+----+------+
|null|null|vv |6 |
|null|null|aa |1 |
|null|i6 |null|66 |
|null|i1 |null|11 |
|888 |null|null|12 |
|123 |null|null|17 |
+----+----+----+------+
Update:
Looks like there is no support for mergeSchema
for orc
data, there is an open ticket in Spark Jira
Actually my data is huge, each day data is almost 5GB, so will it become slow if I read each file individually and union them later ?
– user3607698
Nov 14 '18 at 10:29
yes, there will be a performance impact and this depends on the size of your cluster, the configuration parameters that you use and the resources that you allocate to your job etc...
– Prasad Khode
Nov 15 '18 at 7:03
add a comment |
I have a very stupid workaround for you, just in case if you don't find any solution.
Read all those files into different data frames and then perform a union operation, something like below:
val user1 = sparkSession.read.orc("/home/prasadkhode/data/user1/").toJSON
val user2 = sparkSession.read.orc("/home/prasadkhode/data/user2/").toJSON
val user3 = sparkSession.read.orc("/home/prasadkhode/data/user3/").toJSON
val result = sparkSession.read.json(user1.union(user2).union(user3).rdd)
result.printSchema()
result.show(false)
and the output will be:
root
|-- con: long (nullable = true)
|-- info: string (nullable = true)
|-- name: string (nullable = true)
|-- userId: long (nullable = true)
+----+----+----+------+
|con |info|name|userId|
+----+----+----+------+
|null|null|vv |6 |
|null|null|aa |1 |
|null|i6 |null|66 |
|null|i1 |null|11 |
|888 |null|null|12 |
|123 |null|null|17 |
+----+----+----+------+
Update:
Looks like there is no support for mergeSchema
for orc
data, there is an open ticket in Spark Jira
I have a very stupid workaround for you, just in case if you don't find any solution.
Read all those files into different data frames and then perform a union operation, something like below:
val user1 = sparkSession.read.orc("/home/prasadkhode/data/user1/").toJSON
val user2 = sparkSession.read.orc("/home/prasadkhode/data/user2/").toJSON
val user3 = sparkSession.read.orc("/home/prasadkhode/data/user3/").toJSON
val result = sparkSession.read.json(user1.union(user2).union(user3).rdd)
result.printSchema()
result.show(false)
and the output will be:
root
|-- con: long (nullable = true)
|-- info: string (nullable = true)
|-- name: string (nullable = true)
|-- userId: long (nullable = true)
+----+----+----+------+
|con |info|name|userId|
+----+----+----+------+
|null|null|vv |6 |
|null|null|aa |1 |
|null|i6 |null|66 |
|null|i1 |null|11 |
|888 |null|null|12 |
|123 |null|null|17 |
+----+----+----+------+
Update:
Looks like there is no support for mergeSchema
for orc
data, there is an open ticket in Spark Jira
edited Nov 14 '18 at 10:18
answered Nov 14 '18 at 9:56
Prasad Khode
4,24093043
4,24093043
Actually my data is huge, each day data is almost 5GB, so will it become slow if I read each file individually and union them later ?
– user3607698
Nov 14 '18 at 10:29
yes, there will be a performance impact and this depends on the size of your cluster, the configuration parameters that you use and the resources that you allocate to your job etc...
– Prasad Khode
Nov 15 '18 at 7:03
add a comment |
Actually my data is huge, each day data is almost 5GB, so will it become slow if I read each file individually and union them later ?
– user3607698
Nov 14 '18 at 10:29
yes, there will be a performance impact and this depends on the size of your cluster, the configuration parameters that you use and the resources that you allocate to your job etc...
– Prasad Khode
Nov 15 '18 at 7:03
Actually my data is huge, each day data is almost 5GB, so will it become slow if I read each file individually and union them later ?
– user3607698
Nov 14 '18 at 10:29
Actually my data is huge, each day data is almost 5GB, so will it become slow if I read each file individually and union them later ?
– user3607698
Nov 14 '18 at 10:29
yes, there will be a performance impact and this depends on the size of your cluster, the configuration parameters that you use and the resources that you allocate to your job etc...
– Prasad Khode
Nov 15 '18 at 7:03
yes, there will be a performance impact and this depends on the size of your cluster, the configuration parameters that you use and the resources that you allocate to your job etc...
– Prasad Khode
Nov 15 '18 at 7:03
add a comment |
Thanks for contributing an answer to Stack Overflow!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53296570%2fspark-does-not-read-all-orc-files-from-different-folder-using-merge-schema%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown