Fundamental group of an open subscheme of a normal scheme
$begingroup$
Let $X$ be an irreducible normal projective scheme over $mathbb{C}$. Let $U$ be the open subscheme of smooth points of $X$. Consider the closed subscheme $Z = X setminus U$. Suppose that the codimension of $Z$ in $X$ is at least $2$. Is it true that the fundamental group of $U$ and $X$ are isomorphic?
Edit: Is it true for $X$ an integral normal projective scheme over $mathbb{C}$?
ag.algebraic-geometry
$endgroup$
add a comment |
$begingroup$
Let $X$ be an irreducible normal projective scheme over $mathbb{C}$. Let $U$ be the open subscheme of smooth points of $X$. Consider the closed subscheme $Z = X setminus U$. Suppose that the codimension of $Z$ in $X$ is at least $2$. Is it true that the fundamental group of $U$ and $X$ are isomorphic?
Edit: Is it true for $X$ an integral normal projective scheme over $mathbb{C}$?
ag.algebraic-geometry
$endgroup$
4
$begingroup$
In codimension $2$, is it not a cone over an elliptic curve a counterexample?
$endgroup$
– Francesco Polizzi
Nov 19 '18 at 16:05
1
$begingroup$
@FrancescoPolizzi Is cone over an elliptic curve reduced? (sorry for asking a stupid question). Actually, I want to know the result for X normal projective integral scheme over $mathbb{C}$.
$endgroup$
– Anonymous
Nov 19 '18 at 16:53
$begingroup$
Of course it is reduced
$endgroup$
– Francesco Polizzi
Nov 19 '18 at 17:02
add a comment |
$begingroup$
Let $X$ be an irreducible normal projective scheme over $mathbb{C}$. Let $U$ be the open subscheme of smooth points of $X$. Consider the closed subscheme $Z = X setminus U$. Suppose that the codimension of $Z$ in $X$ is at least $2$. Is it true that the fundamental group of $U$ and $X$ are isomorphic?
Edit: Is it true for $X$ an integral normal projective scheme over $mathbb{C}$?
ag.algebraic-geometry
$endgroup$
Let $X$ be an irreducible normal projective scheme over $mathbb{C}$. Let $U$ be the open subscheme of smooth points of $X$. Consider the closed subscheme $Z = X setminus U$. Suppose that the codimension of $Z$ in $X$ is at least $2$. Is it true that the fundamental group of $U$ and $X$ are isomorphic?
Edit: Is it true for $X$ an integral normal projective scheme over $mathbb{C}$?
ag.algebraic-geometry
ag.algebraic-geometry
edited Nov 19 '18 at 16:56
Anonymous
asked Nov 19 '18 at 15:48
AnonymousAnonymous
1286
1286
4
$begingroup$
In codimension $2$, is it not a cone over an elliptic curve a counterexample?
$endgroup$
– Francesco Polizzi
Nov 19 '18 at 16:05
1
$begingroup$
@FrancescoPolizzi Is cone over an elliptic curve reduced? (sorry for asking a stupid question). Actually, I want to know the result for X normal projective integral scheme over $mathbb{C}$.
$endgroup$
– Anonymous
Nov 19 '18 at 16:53
$begingroup$
Of course it is reduced
$endgroup$
– Francesco Polizzi
Nov 19 '18 at 17:02
add a comment |
4
$begingroup$
In codimension $2$, is it not a cone over an elliptic curve a counterexample?
$endgroup$
– Francesco Polizzi
Nov 19 '18 at 16:05
1
$begingroup$
@FrancescoPolizzi Is cone over an elliptic curve reduced? (sorry for asking a stupid question). Actually, I want to know the result for X normal projective integral scheme over $mathbb{C}$.
$endgroup$
– Anonymous
Nov 19 '18 at 16:53
$begingroup$
Of course it is reduced
$endgroup$
– Francesco Polizzi
Nov 19 '18 at 17:02
4
4
$begingroup$
In codimension $2$, is it not a cone over an elliptic curve a counterexample?
$endgroup$
– Francesco Polizzi
Nov 19 '18 at 16:05
$begingroup$
In codimension $2$, is it not a cone over an elliptic curve a counterexample?
$endgroup$
– Francesco Polizzi
Nov 19 '18 at 16:05
1
1
$begingroup$
@FrancescoPolizzi Is cone over an elliptic curve reduced? (sorry for asking a stupid question). Actually, I want to know the result for X normal projective integral scheme over $mathbb{C}$.
$endgroup$
– Anonymous
Nov 19 '18 at 16:53
$begingroup$
@FrancescoPolizzi Is cone over an elliptic curve reduced? (sorry for asking a stupid question). Actually, I want to know the result for X normal projective integral scheme over $mathbb{C}$.
$endgroup$
– Anonymous
Nov 19 '18 at 16:53
$begingroup$
Of course it is reduced
$endgroup$
– Francesco Polizzi
Nov 19 '18 at 17:02
$begingroup$
Of course it is reduced
$endgroup$
– Francesco Polizzi
Nov 19 '18 at 17:02
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
Let me expand my comment into an answer.
Take as $X$ the cone of vertex $v$ over an elliptic curve $E$. Then $X$ is simply connected (this is a general property of projective cones). However, $U = X-{v}$ is not simply connected: in fact, the projection $pi colon U to E$ onto the basis gives $X$ the structure of a topological fibration with fiber homeomorphic to $mathbb{R}$, so the corresponding long exact sequence of homotopy groups yields $$pi_1(U) = pi_1(E) = mathbb{Z} oplus mathbb{Z}.$$
$endgroup$
add a comment |
$begingroup$
In fact, quite the opposite tends to be true. Mumford [1] showed that for $(X,0)$ the germ of a normal surface singularity (over $mathbf{C}$), $U=Xsetminus 0$, one has $pi_1(U)={1}$ if and only if $X$ is smooth. At the same time, $pi_1(X) = {1}$ since $0to X$ is a homotopy equivalence.
If $X$ is smooth, this is true (the etale variant is called "Zariski-Nagata purity").
EDIT. To address Francesco's comment: of course the example is not projective. The easiest projective example was given by Francesco in his comment: $X$ is the (projective) cone over an elliptic curve $E$ and $U$ the complement of the vertex. Then $pi_1(U)= pi_1(E) = mathbb{Z}^2$ and $pi_1(X) = {1}$.
[1] Mumford, D., The topology of normal singularities of an algebraic surface and a criterion for simplicity, Publ. Math., Inst. Hautes Étud. Sci. 9, 5-22 (1961). ZBL0108.16801.
$endgroup$
$begingroup$
Well, strictly speaking, $X$ is not projective in your example.
$endgroup$
– Francesco Polizzi
Nov 19 '18 at 17:04
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "504"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathoverflow.net%2fquestions%2f315697%2ffundamental-group-of-an-open-subscheme-of-a-normal-scheme%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Let me expand my comment into an answer.
Take as $X$ the cone of vertex $v$ over an elliptic curve $E$. Then $X$ is simply connected (this is a general property of projective cones). However, $U = X-{v}$ is not simply connected: in fact, the projection $pi colon U to E$ onto the basis gives $X$ the structure of a topological fibration with fiber homeomorphic to $mathbb{R}$, so the corresponding long exact sequence of homotopy groups yields $$pi_1(U) = pi_1(E) = mathbb{Z} oplus mathbb{Z}.$$
$endgroup$
add a comment |
$begingroup$
Let me expand my comment into an answer.
Take as $X$ the cone of vertex $v$ over an elliptic curve $E$. Then $X$ is simply connected (this is a general property of projective cones). However, $U = X-{v}$ is not simply connected: in fact, the projection $pi colon U to E$ onto the basis gives $X$ the structure of a topological fibration with fiber homeomorphic to $mathbb{R}$, so the corresponding long exact sequence of homotopy groups yields $$pi_1(U) = pi_1(E) = mathbb{Z} oplus mathbb{Z}.$$
$endgroup$
add a comment |
$begingroup$
Let me expand my comment into an answer.
Take as $X$ the cone of vertex $v$ over an elliptic curve $E$. Then $X$ is simply connected (this is a general property of projective cones). However, $U = X-{v}$ is not simply connected: in fact, the projection $pi colon U to E$ onto the basis gives $X$ the structure of a topological fibration with fiber homeomorphic to $mathbb{R}$, so the corresponding long exact sequence of homotopy groups yields $$pi_1(U) = pi_1(E) = mathbb{Z} oplus mathbb{Z}.$$
$endgroup$
Let me expand my comment into an answer.
Take as $X$ the cone of vertex $v$ over an elliptic curve $E$. Then $X$ is simply connected (this is a general property of projective cones). However, $U = X-{v}$ is not simply connected: in fact, the projection $pi colon U to E$ onto the basis gives $X$ the structure of a topological fibration with fiber homeomorphic to $mathbb{R}$, so the corresponding long exact sequence of homotopy groups yields $$pi_1(U) = pi_1(E) = mathbb{Z} oplus mathbb{Z}.$$
answered Nov 19 '18 at 17:24
Francesco PolizziFrancesco Polizzi
47.6k3127207
47.6k3127207
add a comment |
add a comment |
$begingroup$
In fact, quite the opposite tends to be true. Mumford [1] showed that for $(X,0)$ the germ of a normal surface singularity (over $mathbf{C}$), $U=Xsetminus 0$, one has $pi_1(U)={1}$ if and only if $X$ is smooth. At the same time, $pi_1(X) = {1}$ since $0to X$ is a homotopy equivalence.
If $X$ is smooth, this is true (the etale variant is called "Zariski-Nagata purity").
EDIT. To address Francesco's comment: of course the example is not projective. The easiest projective example was given by Francesco in his comment: $X$ is the (projective) cone over an elliptic curve $E$ and $U$ the complement of the vertex. Then $pi_1(U)= pi_1(E) = mathbb{Z}^2$ and $pi_1(X) = {1}$.
[1] Mumford, D., The topology of normal singularities of an algebraic surface and a criterion for simplicity, Publ. Math., Inst. Hautes Étud. Sci. 9, 5-22 (1961). ZBL0108.16801.
$endgroup$
$begingroup$
Well, strictly speaking, $X$ is not projective in your example.
$endgroup$
– Francesco Polizzi
Nov 19 '18 at 17:04
add a comment |
$begingroup$
In fact, quite the opposite tends to be true. Mumford [1] showed that for $(X,0)$ the germ of a normal surface singularity (over $mathbf{C}$), $U=Xsetminus 0$, one has $pi_1(U)={1}$ if and only if $X$ is smooth. At the same time, $pi_1(X) = {1}$ since $0to X$ is a homotopy equivalence.
If $X$ is smooth, this is true (the etale variant is called "Zariski-Nagata purity").
EDIT. To address Francesco's comment: of course the example is not projective. The easiest projective example was given by Francesco in his comment: $X$ is the (projective) cone over an elliptic curve $E$ and $U$ the complement of the vertex. Then $pi_1(U)= pi_1(E) = mathbb{Z}^2$ and $pi_1(X) = {1}$.
[1] Mumford, D., The topology of normal singularities of an algebraic surface and a criterion for simplicity, Publ. Math., Inst. Hautes Étud. Sci. 9, 5-22 (1961). ZBL0108.16801.
$endgroup$
$begingroup$
Well, strictly speaking, $X$ is not projective in your example.
$endgroup$
– Francesco Polizzi
Nov 19 '18 at 17:04
add a comment |
$begingroup$
In fact, quite the opposite tends to be true. Mumford [1] showed that for $(X,0)$ the germ of a normal surface singularity (over $mathbf{C}$), $U=Xsetminus 0$, one has $pi_1(U)={1}$ if and only if $X$ is smooth. At the same time, $pi_1(X) = {1}$ since $0to X$ is a homotopy equivalence.
If $X$ is smooth, this is true (the etale variant is called "Zariski-Nagata purity").
EDIT. To address Francesco's comment: of course the example is not projective. The easiest projective example was given by Francesco in his comment: $X$ is the (projective) cone over an elliptic curve $E$ and $U$ the complement of the vertex. Then $pi_1(U)= pi_1(E) = mathbb{Z}^2$ and $pi_1(X) = {1}$.
[1] Mumford, D., The topology of normal singularities of an algebraic surface and a criterion for simplicity, Publ. Math., Inst. Hautes Étud. Sci. 9, 5-22 (1961). ZBL0108.16801.
$endgroup$
In fact, quite the opposite tends to be true. Mumford [1] showed that for $(X,0)$ the germ of a normal surface singularity (over $mathbf{C}$), $U=Xsetminus 0$, one has $pi_1(U)={1}$ if and only if $X$ is smooth. At the same time, $pi_1(X) = {1}$ since $0to X$ is a homotopy equivalence.
If $X$ is smooth, this is true (the etale variant is called "Zariski-Nagata purity").
EDIT. To address Francesco's comment: of course the example is not projective. The easiest projective example was given by Francesco in his comment: $X$ is the (projective) cone over an elliptic curve $E$ and $U$ the complement of the vertex. Then $pi_1(U)= pi_1(E) = mathbb{Z}^2$ and $pi_1(X) = {1}$.
[1] Mumford, D., The topology of normal singularities of an algebraic surface and a criterion for simplicity, Publ. Math., Inst. Hautes Étud. Sci. 9, 5-22 (1961). ZBL0108.16801.
edited Nov 19 '18 at 17:16
answered Nov 19 '18 at 17:02
Piotr AchingerPiotr Achinger
8,27812852
8,27812852
$begingroup$
Well, strictly speaking, $X$ is not projective in your example.
$endgroup$
– Francesco Polizzi
Nov 19 '18 at 17:04
add a comment |
$begingroup$
Well, strictly speaking, $X$ is not projective in your example.
$endgroup$
– Francesco Polizzi
Nov 19 '18 at 17:04
$begingroup$
Well, strictly speaking, $X$ is not projective in your example.
$endgroup$
– Francesco Polizzi
Nov 19 '18 at 17:04
$begingroup$
Well, strictly speaking, $X$ is not projective in your example.
$endgroup$
– Francesco Polizzi
Nov 19 '18 at 17:04
add a comment |
Thanks for contributing an answer to MathOverflow!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathoverflow.net%2fquestions%2f315697%2ffundamental-group-of-an-open-subscheme-of-a-normal-scheme%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
4
$begingroup$
In codimension $2$, is it not a cone over an elliptic curve a counterexample?
$endgroup$
– Francesco Polizzi
Nov 19 '18 at 16:05
1
$begingroup$
@FrancescoPolizzi Is cone over an elliptic curve reduced? (sorry for asking a stupid question). Actually, I want to know the result for X normal projective integral scheme over $mathbb{C}$.
$endgroup$
– Anonymous
Nov 19 '18 at 16:53
$begingroup$
Of course it is reduced
$endgroup$
– Francesco Polizzi
Nov 19 '18 at 17:02