All combinations of two dataframes
.everyoneloves__top-leaderboard:empty,.everyoneloves__mid-leaderboard:empty,.everyoneloves__bot-mid-leaderboard:empty{ height:90px;width:728px;box-sizing:border-box;
}
Having two dataframes:
id Country Channel Week Value
0 ES Train 2018-48 1000
1 ES Train 2018-49 1000
2 ES Train 2018-50 1000
3 ES Train 2018-51 1000
4 ES Train 2018-52 1000
and
Week Product1 Product2 Product3
2018-48 25% 50% 25%
2018-49 25% 50% 25%
2018-50 25% 50% 25%
2018-51 25% 50% 25%
2018-52 25% 50% 25%
How can I create a combination of both where I add each product to every line of the first frame and use the value multiplied by the product itself?
E.g. for the first two weeks, this would result in:
id Country Channel Week Value Product
0 ES Train 2018-48 250 Product1
1 ES Train 2018-48 500 Product2
2 ES Train 2018-48 250 Product3
3 ES Train 2018-49 250 Product1
4 ES Train 2018-49 500 Product2
5 ES Train 2018-49 250 Product3
6 ...
python pandas
add a comment |
Having two dataframes:
id Country Channel Week Value
0 ES Train 2018-48 1000
1 ES Train 2018-49 1000
2 ES Train 2018-50 1000
3 ES Train 2018-51 1000
4 ES Train 2018-52 1000
and
Week Product1 Product2 Product3
2018-48 25% 50% 25%
2018-49 25% 50% 25%
2018-50 25% 50% 25%
2018-51 25% 50% 25%
2018-52 25% 50% 25%
How can I create a combination of both where I add each product to every line of the first frame and use the value multiplied by the product itself?
E.g. for the first two weeks, this would result in:
id Country Channel Week Value Product
0 ES Train 2018-48 250 Product1
1 ES Train 2018-48 500 Product2
2 ES Train 2018-48 250 Product3
3 ES Train 2018-49 250 Product1
4 ES Train 2018-49 500 Product2
5 ES Train 2018-49 250 Product3
6 ...
python pandas
add a comment |
Having two dataframes:
id Country Channel Week Value
0 ES Train 2018-48 1000
1 ES Train 2018-49 1000
2 ES Train 2018-50 1000
3 ES Train 2018-51 1000
4 ES Train 2018-52 1000
and
Week Product1 Product2 Product3
2018-48 25% 50% 25%
2018-49 25% 50% 25%
2018-50 25% 50% 25%
2018-51 25% 50% 25%
2018-52 25% 50% 25%
How can I create a combination of both where I add each product to every line of the first frame and use the value multiplied by the product itself?
E.g. for the first two weeks, this would result in:
id Country Channel Week Value Product
0 ES Train 2018-48 250 Product1
1 ES Train 2018-48 500 Product2
2 ES Train 2018-48 250 Product3
3 ES Train 2018-49 250 Product1
4 ES Train 2018-49 500 Product2
5 ES Train 2018-49 250 Product3
6 ...
python pandas
Having two dataframes:
id Country Channel Week Value
0 ES Train 2018-48 1000
1 ES Train 2018-49 1000
2 ES Train 2018-50 1000
3 ES Train 2018-51 1000
4 ES Train 2018-52 1000
and
Week Product1 Product2 Product3
2018-48 25% 50% 25%
2018-49 25% 50% 25%
2018-50 25% 50% 25%
2018-51 25% 50% 25%
2018-52 25% 50% 25%
How can I create a combination of both where I add each product to every line of the first frame and use the value multiplied by the product itself?
E.g. for the first two weeks, this would result in:
id Country Channel Week Value Product
0 ES Train 2018-48 250 Product1
1 ES Train 2018-48 500 Product2
2 ES Train 2018-48 250 Product3
3 ES Train 2018-49 250 Product1
4 ES Train 2018-49 500 Product2
5 ES Train 2018-49 250 Product3
6 ...
python pandas
python pandas
asked Nov 21 '18 at 23:18
Bishonen_PLBishonen_PL
13910
13910
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
Assuming you start with dataframes df1
and df2
, first melt df2
(wide-to-long), convert your percentages to numeric, then merge with df1
:
df2 = pd.melt(df2, id_vars='Week', value_vars=['Product1', 'Product2', 'Product3'])
df2['value'] = pd.to_numeric(df2['value'].str[:-1])
res = df1.merge(df2)
.eval('Value = Value * value / 100')
.drop('value', 1)
print(res)
id Country Channel Week Value variable
0 0 ES Train 2018-48 250.0 Product1
1 0 ES Train 2018-48 500.0 Product2
2 0 ES Train 2018-48 250.0 Product3
3 1 ES Train 2018-49 250.0 Product1
4 1 ES Train 2018-49 500.0 Product2
5 1 ES Train 2018-49 250.0 Product3
6 2 ES Train 2018-50 250.0 Product1
7 2 ES Train 2018-50 500.0 Product2
8 2 ES Train 2018-50 250.0 Product3
9 3 ES Train 2018-51 250.0 Product1
10 3 ES Train 2018-51 500.0 Product2
11 3 ES Train 2018-51 250.0 Product3
12 4 ES Train 2018-52 250.0 Product1
13 4 ES Train 2018-52 500.0 Product2
14 4 ES Train 2018-52 250.0 Product3
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
StackExchange.using("externalEditor", function () {
StackExchange.using("snippets", function () {
StackExchange.snippets.init();
});
});
}, "code-snippets");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "1"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53421801%2fall-combinations-of-two-dataframes%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
Assuming you start with dataframes df1
and df2
, first melt df2
(wide-to-long), convert your percentages to numeric, then merge with df1
:
df2 = pd.melt(df2, id_vars='Week', value_vars=['Product1', 'Product2', 'Product3'])
df2['value'] = pd.to_numeric(df2['value'].str[:-1])
res = df1.merge(df2)
.eval('Value = Value * value / 100')
.drop('value', 1)
print(res)
id Country Channel Week Value variable
0 0 ES Train 2018-48 250.0 Product1
1 0 ES Train 2018-48 500.0 Product2
2 0 ES Train 2018-48 250.0 Product3
3 1 ES Train 2018-49 250.0 Product1
4 1 ES Train 2018-49 500.0 Product2
5 1 ES Train 2018-49 250.0 Product3
6 2 ES Train 2018-50 250.0 Product1
7 2 ES Train 2018-50 500.0 Product2
8 2 ES Train 2018-50 250.0 Product3
9 3 ES Train 2018-51 250.0 Product1
10 3 ES Train 2018-51 500.0 Product2
11 3 ES Train 2018-51 250.0 Product3
12 4 ES Train 2018-52 250.0 Product1
13 4 ES Train 2018-52 500.0 Product2
14 4 ES Train 2018-52 250.0 Product3
add a comment |
Assuming you start with dataframes df1
and df2
, first melt df2
(wide-to-long), convert your percentages to numeric, then merge with df1
:
df2 = pd.melt(df2, id_vars='Week', value_vars=['Product1', 'Product2', 'Product3'])
df2['value'] = pd.to_numeric(df2['value'].str[:-1])
res = df1.merge(df2)
.eval('Value = Value * value / 100')
.drop('value', 1)
print(res)
id Country Channel Week Value variable
0 0 ES Train 2018-48 250.0 Product1
1 0 ES Train 2018-48 500.0 Product2
2 0 ES Train 2018-48 250.0 Product3
3 1 ES Train 2018-49 250.0 Product1
4 1 ES Train 2018-49 500.0 Product2
5 1 ES Train 2018-49 250.0 Product3
6 2 ES Train 2018-50 250.0 Product1
7 2 ES Train 2018-50 500.0 Product2
8 2 ES Train 2018-50 250.0 Product3
9 3 ES Train 2018-51 250.0 Product1
10 3 ES Train 2018-51 500.0 Product2
11 3 ES Train 2018-51 250.0 Product3
12 4 ES Train 2018-52 250.0 Product1
13 4 ES Train 2018-52 500.0 Product2
14 4 ES Train 2018-52 250.0 Product3
add a comment |
Assuming you start with dataframes df1
and df2
, first melt df2
(wide-to-long), convert your percentages to numeric, then merge with df1
:
df2 = pd.melt(df2, id_vars='Week', value_vars=['Product1', 'Product2', 'Product3'])
df2['value'] = pd.to_numeric(df2['value'].str[:-1])
res = df1.merge(df2)
.eval('Value = Value * value / 100')
.drop('value', 1)
print(res)
id Country Channel Week Value variable
0 0 ES Train 2018-48 250.0 Product1
1 0 ES Train 2018-48 500.0 Product2
2 0 ES Train 2018-48 250.0 Product3
3 1 ES Train 2018-49 250.0 Product1
4 1 ES Train 2018-49 500.0 Product2
5 1 ES Train 2018-49 250.0 Product3
6 2 ES Train 2018-50 250.0 Product1
7 2 ES Train 2018-50 500.0 Product2
8 2 ES Train 2018-50 250.0 Product3
9 3 ES Train 2018-51 250.0 Product1
10 3 ES Train 2018-51 500.0 Product2
11 3 ES Train 2018-51 250.0 Product3
12 4 ES Train 2018-52 250.0 Product1
13 4 ES Train 2018-52 500.0 Product2
14 4 ES Train 2018-52 250.0 Product3
Assuming you start with dataframes df1
and df2
, first melt df2
(wide-to-long), convert your percentages to numeric, then merge with df1
:
df2 = pd.melt(df2, id_vars='Week', value_vars=['Product1', 'Product2', 'Product3'])
df2['value'] = pd.to_numeric(df2['value'].str[:-1])
res = df1.merge(df2)
.eval('Value = Value * value / 100')
.drop('value', 1)
print(res)
id Country Channel Week Value variable
0 0 ES Train 2018-48 250.0 Product1
1 0 ES Train 2018-48 500.0 Product2
2 0 ES Train 2018-48 250.0 Product3
3 1 ES Train 2018-49 250.0 Product1
4 1 ES Train 2018-49 500.0 Product2
5 1 ES Train 2018-49 250.0 Product3
6 2 ES Train 2018-50 250.0 Product1
7 2 ES Train 2018-50 500.0 Product2
8 2 ES Train 2018-50 250.0 Product3
9 3 ES Train 2018-51 250.0 Product1
10 3 ES Train 2018-51 500.0 Product2
11 3 ES Train 2018-51 250.0 Product3
12 4 ES Train 2018-52 250.0 Product1
13 4 ES Train 2018-52 500.0 Product2
14 4 ES Train 2018-52 250.0 Product3
answered Nov 21 '18 at 23:25
jppjpp
102k2166116
102k2166116
add a comment |
add a comment |
Thanks for contributing an answer to Stack Overflow!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53421801%2fall-combinations-of-two-dataframes%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown