Ruthenium






chemical element with atomic number 44

Chemical element with atomic number 44


















































































































































































Ruthenium,  44Ru
Ruthenium a half bar.jpg
Ruthenium
Pronunciation
/rˈθniəm/(roo-THEE-nee-əm)
Appearance silvery white metallic

Standard atomic weight.mw-parser-output .nobold{font-weight:normal}
Ar, std(Ru)

7002101070000000000♠101.07(2)[1]
Ruthenium in the periodic table






















































































































































Hydrogen


Helium

Lithium

Beryllium


Boron

Carbon

Nitrogen

Oxygen

Fluorine

Neon

Sodium

Magnesium


Aluminium

Silicon

Phosphorus

Sulfur

Chlorine

Argon

Potassium

Calcium

Scandium


Titanium

Vanadium

Chromium

Manganese

Iron

Cobalt

Nickel

Copper

Zinc

Gallium

Germanium

Arsenic

Selenium

Bromine

Krypton

Rubidium

Strontium

Yttrium



Zirconium

Niobium

Molybdenum

Technetium

Ruthenium

Rhodium

Palladium

Silver

Cadmium

Indium

Tin

Antimony

Tellurium

Iodine

Xenon

Caesium

Barium

Lanthanum

Cerium

Praseodymium

Neodymium

Promethium

Samarium

Europium

Gadolinium

Terbium

Dysprosium

Holmium

Erbium

Thulium

Ytterbium

Lutetium

Hafnium

Tantalum

Tungsten

Rhenium

Osmium

Iridium

Platinum

Gold

Mercury (element)

Thallium

Lead

Bismuth

Polonium

Astatine

Radon

Francium

Radium

Actinium

Thorium

Protactinium

Uranium

Neptunium

Plutonium

Americium

Curium

Berkelium

Californium

Einsteinium

Fermium

Mendelevium

Nobelium

Lawrencium

Rutherfordium

Dubnium

Seaborgium

Bohrium

Hassium

Meitnerium

Darmstadtium

Roentgenium

Copernicium

Nihonium

Flerovium

Moscovium

Livermorium

Tennessine

Oganesson



Fe

Ru

Os

technetium ← ruthenium → rhodium


Atomic number (Z) 44
Group group 8
Period
period 5
Block
d-block
Element category
  transition metal
Electron configuration [Kr] 4d7 5s1
Electrons per shell
2, 8, 18, 15, 1
Physical properties

Phase
at STP
solid
Melting point 2607 K ​(2334 °C, ​4233 °F)
Boiling point 4423 K ​(4150 °C, ​7502 °F)

Density (near r.t.)
12.45 g/cm3
when liquid (at m.p.) 10.65 g/cm3
Heat of fusion 38.59 kJ/mol
Heat of vaporization 619 kJ/mol
Molar heat capacity 24.06 J/(mol·K)

Vapor pressure





















P (Pa)
1
10
100
1 k
10 k
100 k
at T (K)
2588
2811
3087
3424
3845
4388


Atomic properties
Oxidation states −4, −2, +1,[2] +2, +3, +4, +5, +6, +7, +8 (a mildly acidic oxide)
Electronegativity Pauling scale: 2.2
Ionization energies

  • 1st: 710.2 kJ/mol

  • 2nd: 1620 kJ/mol

  • 3rd: 2747 kJ/mol


Atomic radius empirical: 134 pm
Covalent radius 146±7 pm

Color lines in a spectral range

Spectral lines of ruthenium
Other properties
Natural occurrence primordial
Crystal structure ​hexagonal close-packed (hcp)
Hexagonal close packed crystal structure for ruthenium


Speed of sound thin rod
5970 m/s (at 20 °C)
Thermal expansion 6.4 µm/(m·K) (at 25 °C)
Thermal conductivity 117 W/(m·K)
Electrical resistivity 71 nΩ·m (at 0 °C)
Magnetic ordering
paramagnetic[3]
Magnetic susceptibility +43.2·10−6 cm3/mol (298 K)[4]
Young's modulus 447 GPa
Shear modulus 173 GPa
Bulk modulus 220 GPa
Poisson ratio 0.30
Mohs hardness 6.5
Brinell hardness 2160 MPa
CAS Number 7440-18-8
History
Naming after Ruthenia (Latin for: medieval Kyivska Rus' region)

Discovery and first isolation

Karl Ernst Claus (1844)
Main isotopes of ruthenium










































































Iso­tope

Abun­dance

Half-life
(t1/2)

Decay mode

Pro­duct

96Ru
5.54%

stable

97Ru

syn
2.9 d

ε

97Tc

γ



98Ru
1.87%
stable

99Ru
12.76%
stable

100Ru
12.60%
stable

101Ru
17.06%
stable

102Ru
31.55%
stable

103Ru
syn
39.26 d

β

103Rh
γ



104Ru
18.62%
stable

106Ru
syn
373.59 d
β

106Rh


| references

Ruthenium is a chemical element with symbol Ru and atomic number 44. It is a rare transition metal belonging to the platinum group of the periodic table. Like the other metals of the platinum group, ruthenium is inert to most other chemicals. Russian-born scientist of Baltic-German ancestry Karl Ernst Claus discovered the element in 1844 at Kazan State University and named it after the Latin name of his homeland, Ruthenia. Ruthenium is usually found as a minor component of platinum ores; the annual production has risen from about 19 tonnes in 2009 [6] to some 35.5 tonnes in 2017.[7] Most ruthenium produced is used in wear-resistant electrical contacts and thick-film resistors. A minor application for ruthenium is in platinum alloys and as a chemistry catalyst. A new application of ruthenium is as the capping layer for extreme ultraviolet photomasks. Ruthenium is generally found in ores with the other platinum group metals in the Ural Mountains and in North and South America. Small but commercially important quantities are also found in pentlandite extracted from Sudbury, Ontario and in pyroxenite deposits in South Africa.[8]




Contents






  • 1 Characteristics


    • 1.1 Physical properties


    • 1.2 Isotopes


    • 1.3 Occurrence




  • 2 Production


  • 3 Chemical compounds


    • 3.1 Oxides and chalcogenides


    • 3.2 Halides and oxyhalides


    • 3.3 Coordination and organometallic complexes




  • 4 History


  • 5 Applications


    • 5.1 Catalysis


      • 5.1.1 Homogeneous catalysis


      • 5.1.2 Heterogeneous catalysis




    • 5.2 Emerging applications




  • 6 References


  • 7 Bibliography


  • 8 External links





Characteristics



Physical properties




Gas phase grown crystals of ruthenium metal.


Ruthenium, a polyvalent hard white metal, is a member of the platinum group and is in group 8 of the periodic table:




























Z Element
No. of electrons/shell
26 iron 2, 8, 14, 2
44 ruthenium 2, 8, 18, 15, 1
76 osmium 2, 8, 18, 32, 14, 2
108 hassium 2, 8, 18, 32, 32, 14, 2

Whereas all other group 8 elements have 2 electrons in the outermost shell, in ruthenium, the outermost shell has only one electron (the final electron is in a lower shell). This anomaly is observed in the neighboring metals niobium (41), molybdenum (42), and rhodium (45).


Ruthenium has four crystal modifications and does not tarnish unless subject to high temperatures. Ruthenium dissolves in fused alkalis to give ruthenates (RuO2−
4
), is not attacked by acids (even aqua regia) but is attacked by halogens at high temperatures.[9] Indeed, ruthenium is most readily attacked by oxidizing agents.[10] Small amounts of ruthenium can increase the hardness of platinum and palladium. The corrosion resistance of titanium is increased markedly by the addition of a small amount of ruthenium.[9] The metal can be plated by electroplating and by thermal decomposition. A ruthenium-molybdenum alloy is known to be superconductive at temperatures below 10.6 K.[9] Ruthenium is the last of the 4d transition metals that can assume the group oxidation state +8, and even then it is less stable there than the heavier congener osmium: this is the first group from the left of the table where the second and third-row transition metals display notable differences in chemical behavior. Like iron but unlike osmium, ruthenium can form aqueous cations in its lower oxidation states of +2 and +3.[11]


Ruthenium is the first in a downward trend in the melting and boiling points and atomization enthalpy in the 4d transition metals after the maximum seen at molybdenum, because the 4d subshell is more than half full and the electrons are contributing less to metallic bonding. (Technetium, the previous element, has an exceptionally low value that is off the trend due to its half-filled [Kr]4d55s2 configuration, though the small amount of energy needed to excite it to a [Kr]4d65s1 configuration indicates that it is not as far off the trend in the 4d series as manganese in the 3d transition series.)[12] Unlike the lighter congener iron, ruthenium is paramagnetic at room temperature, as iron also is above its Curie point.[13]


The reduction potentials in acidic aqueous solution for some common ruthenium ions are shown below:[14]

































0.455 V Ru2+ + 2e
↔ Ru
0.249 V Ru3+ + e
↔ Ru2+
1.120 V RuO2 + 4H+ + 2e
↔ Ru2+ + 2H2O
1.563 V
RuO2−
4
+ 8H+ + 4e
↔ Ru2+ + 4H2O
1.368 V
RuO
4
+ 8H+ + 5e
↔ Ru2+ + 4H2O
1.387 V RuO4 + 4H+ + 4e
↔ RuO2 + 2H2O


Isotopes



Naturally occurring ruthenium is composed of seven stable isotopes. Additionally, 34 radioactive isotopes have been discovered. Of these radioisotopes, the most stable are 106Ru with a half-life of 373.59 days, 103Ru with a half-life of 39.26 days and 97Ru with a half-life of 2.9 days.[15][16]


Fifteen other radioisotopes have been characterized with atomic weights ranging from 89.93 u (90Ru) to 114.928 u (115Ru). Most of these have half-lives that are less than five minutes except 95Ru (half-life: 1.643 hours) and 105Ru (half-life: 4.44 hours).[15][16]


The primary decay mode before the most abundant isotope, 102Ru, is electron capture and the primary mode after is beta emission. The primary decay product before 102Ru is technetium and the primary decay product after is rhodium.[15][16]



Occurrence



As the 74th most abundant element in Earth's crust, ruthenium is relatively rare,[17] found in about 100 parts per trillion.[18] This element is generally found in ores with the other platinum group metals in the Ural Mountains and in North and South America. Small but commercially important quantities are also found in pentlandite extracted from Sudbury, Ontario, Canada, and in pyroxenite deposits in South Africa. The native form of ruthenium is a very rare mineral (Ir replaces part of Ru in its structure).[19][20]



Production


Roughly 12 tonnes of ruthenium are mined each year with world reserves estimated at 5,000 tonnes.[17] The composition of the mined platinum group metal (PGM) mixtures varies widely, depending on the geochemical formation. For example, the PGMs mined in South Africa contain on average 11% ruthenium while the PGMs mined in the former USSR contain only 2% (1992).[21][22] Ruthenium, osmium, and iridium are considered the minor platinum group metals.[13]


Ruthenium, like the other platinum group metals, is obtained commercially as a by-product from nickel, and copper, and platinum metals ore processing. During electrorefining of copper and nickel, noble metals such as silver, gold, and the platinum group metals precipitate as anode mud, the feedstock for the extraction.[19][20] The metals are converted to ionized solutes by any of several methods, depending on the composition of the feedstock. One representative method is fusion with sodium peroxide followed by dissolution in aqua regia, and solution in a mixture of chlorine with hydrochloric acid.[23][24]Osmium, ruthenium, rhodium, and iridium are insoluble in aqua regia and readily precipitate, leaving the other metals in solution. Rhodium is separated from the residue by treatment with molten sodium bisulfate. The insoluble residue, containing Ru, Os, and Ir is treated with sodium oxide, in which Ir is insoluble, producing dissolved Ru and Os salts. After oxidation to the volatile oxides, RuO
4
is separated from OsO
4
by precipitation of (NH4)3RuCl6 with ammonium chloride or by distillation or extraction with organic solvents of the volatile osmium tetroxide.[25]Hydrogen is used to reduce ammonium ruthenium chloride yielding a powder.[26] The product is reduced using hydrogen, yielding the metal as a powder or sponge metal that can be treated with powder metallurgy techniques or argon-arc welding.[27]



Chemical compounds



The oxidation states of ruthenium range from 0 to +8, and −2. The properties of ruthenium and osmium compounds are often similar. The +2, +3, and +4 states are the most common. The most prevalent precursor is ruthenium trichloride, a red solid that is poorly defined chemically but versatile synthetically.[26]



Oxides and chalcogenides


Ruthenium can be oxidized to ruthenium(IV) oxide (RuO2, oxidation state +4) which can in turn be oxidized by sodium metaperiodate to the volatile yellow tetrahedral ruthenium tetroxide, RuO4, an aggressive, strong oxidizing agent with structure and properties analogous to osmium tetroxide. Like osmium tetroxide, ruthenium tetroxide is a potent fixative and stain for electron microscopy of organic materials, and is mostly used to reveal the structure of polymer samples.[28] Dipotassium ruthenate (K2RuO4, +6), and potassium perruthenate (KRuO4, +7) are also known.[29] Unlike osmium tetroxide, ruthenium tetroxide is less stable and is strong enough as an oxidising agent to oxidise dilute hydrochloric acid and organic solvents like ethanol at room temperature, and is easily reduced to ruthenate (RuO2−
4
) in aqueous alkaline solutions; it decomposes to form the dioxide above 100 °C. Unlike iron but like osmium, ruthenium does not form oxides in its lower +2 and +3 oxidation states.[30] Ruthenium forms dichalcogenides only when reacted directly with the chalcogens, which are diamagnetic semiconductors crystallizing in the pyrite structure and thus must contain ruthenium(II).[30]


Like iron, ruthenium does not readily form oxoanions, and prefers to achieve high coordination numbers with hydroxide ions instead. Ruthenium tetroxide is reduced by cold dilute potassium hydroxide to form black potassium perruthenate, KRuO4, with ruthenium in the +7 oxidation state. Potassium perruthenate can also be produced by oxidising potassium ruthenate, K2RuO4, with chlorine gas. The perruthenate ion is unstable and is reduced by water to form the orange ruthenate. Potassium ruthenate may be synthesized by reacting ruthenium metal with potassium hydroxide and potassium nitrate.[31]


Some mixed oxides are also known, such as MIIRuIVO3, Na3RuVO4, Na
2
RuV
2
O
7
, and MII
2
LnIII
RuV
O
6
.[31]



Halides and oxyhalides


The highest known ruthenium halide is the hexafluoride, a dark brown solid that melts at 54 °C. It hydrolyzes violently upon contact with water and easily disproportionates to form a mixture of lower ruthenium fluorides, releasing fluorine gas. Ruthenium pentafluoride is a tetrameric dark green solid that is also readily hydrolyzed, melting at 86.5 °C. The yellow ruthenium tetrafluoride is probably also polymeric and can be formed by reducing the pentafluoride with iodine. Among the binary compounds of ruthenium, these high oxidation states are known only in the oxides and fluorides.[32]


Ruthenium trichloride is a well-known compound, existing in a black α-form and a dark brown β-form: the trihydrate is red.[33] Of the known trihalides, trifluoride is dark brown and decomposes above 650 °C, tetrabromide is dark-brown and decomposes above 400 °C, and triiodide is black.[32] Of the dihalides, difluoride is not known, dichloride is brown, dibromide is black, and diiodide is blue.[32] The only known oxyhalide is the pale green ruthenium(VI) oxyfluoride, RuOF4.[33]



Coordination and organometallic complexes





Tris(bipyridine)ruthenium(II) chloride.



Skeletal formula of Grubbs' catalyst.

Grubbs' catalyst, which earned a Nobel Prize for its inventor, is used in alkene metathesis reactions.


Ruthenium forms a variety of coordination complexes. Examples are the many pentammine derivatives [Ru(NH3)5L]n+ that often exist for both Ru(II) and Ru(III). Derivatives of bipyridine and terpyridine are numerous, best known being the luminescent tris(bipyridine)ruthenium(II) chloride.


Ruthenium forms a wide range compounds with carbon-ruthenium bonds. Grubbs' catalyst is used for alkene metathesis.[34]Ruthenocene is analogous to ferrocene structurally, but exhibits distinctive redox properties. The colorless liquid ruthenium pentacarbonyl converts in the absence of CO pressure to the dark red solid triruthenium dodecacarbonyl. Ruthenium trichloride reacts with carbon monoxide to give many derivatives including RuHCl(CO)(PPh3)3 and Ru(CO)2(PPh3)3 (Roper's complex). Heating solutions of ruthenium trichloride in alcohols with triphenylphosphine gives tris(triphenylphosphine)ruthenium dichloride (RuCl2(PPh3)3), which converts to the hydride complex chlorohydridotris(triphenylphosphine)ruthenium(II) (RuHCl(PPh3)3).[26]



History


Though naturally occurring platinum alloys containing all six platinum-group metals were used for a long time by pre-Columbian Americans and known as a material to European chemists from the mid-16th century, not until the mid-18th century was platinum identified as a pure element. That natural platinum contained palladium, rhodium, osmium and iridium was discovered in the first decade of the 19th century.[35] Platinum in alluvial sands of Russian rivers gave access to raw material for use in plates and medals and for the minting of ruble coins, starting in 1828.[36] Residues from platinum production for coinage were available in the Russian Empire, and therefore most of the research on them was done in Eastern Europe.


It is possible that the Polish chemist Jędrzej Śniadecki isolated element 44 (which he called "vestium" after the asteroid Vesta discovered shortly before) from South American platinum ores in 1807. He published an announcement of his discovery in 1808.[37] His work was never confirmed, however, and he later withdrew his claim of discovery.[17]


Jöns Berzelius and Gottfried Osann nearly discovered ruthenium in 1827.[38] They examined residues that were left after dissolving crude platinum from the Ural Mountains in aqua regia. Berzelius did not find any unusual metals, but Osann thought he found three new metals, which he called pluranium, ruthenium, and polinium. This discrepancy led to a long-standing controversy between Berzelius and Osann about the composition of the residues.[39] As Osann was not able to repeat his isolation of ruthenium, he eventually relinquished his claims.[39][40] The name "ruthenium" was chosen by Osann because the analysed samples stemmed from the Ural Mountains in Russia.[41] The name itself derives from Ruthenia, the Latin word for Rus', a historical area that included present-day Ukraine, Belarus, western Russia, and parts of Slovakia and Poland.


In 1844, Karl Ernst Claus, a Russian scientist of Baltic German descent, showed that the compounds prepared by Gottfried Osann contained small amounts of ruthenium, which Claus had discovered the same year.[35] Claus isolated ruthenium from the platinum residues of rouble production while he was working in Kazan University, Kazan,[39] the same way its heavier congener osmium had been discovered four decades earlier.[18] Claus showed that ruthenium oxide contained a new metal and obtained 6 grams of ruthenium from the part of crude platinum that is insoluble in aqua regia.[39] Choosing the name for the new element, Claus stated: "I named the new body, in honour of my Motherland, ruthenium. I had every right to call it by this name because Mr. Osann relinquished his ruthenium and the word does not yet exist in chemistry."[39][42]



Applications


Because it hardens platinum and palladium alloys, ruthenium is used in electrical contacts, where a thin film is sufficient to achieve the desired durability. With similar properties and lower cost than rhodium,[27] electric contacts are a major use of ruthenium.[19][43] The plate is applied to the base by electroplating[44] or sputtering.[45]


Ruthenium dioxide with lead and bismuth ruthenates are used in thick-film chip resistors.[46][47][48] These two electronic applications account for 50% of the ruthenium consumption.[17]


Ruthenium is seldom alloyed with metals outside the platinum group, where small quantities improve some properties. The added corrosion resistance in titanium alloys led to the development of a special alloy with 0.1% ruthenium.[49] Ruthenium is also used in some advanced high-temperature single-crystal superalloys, with applications that include the turbines in jet engines. Several nickel based superalloy compositions are described, such as EPM-102 (with 3% Ru), TMS-162 (with 6% Ru), TMS-138,[50] and TMS-174,[51][52] the latter two containing 6% rhenium.[53]Fountain pen nibs are frequently tipped with ruthenium alloy. From 1944 onward, the famous Parker 51 fountain pen was fitted with the "RU" nib, a 14K gold nib tipped with 96.2% ruthenium and 3.8% iridium.[54]


Ruthenium is a component of mixed-metal oxide (MMO) anodes used for cathodic protection of underground and submerged structures, and for electrolytic cells for such processes as generating chlorine from salt water.[55] The fluorescence of some ruthenium complexes is quenched by oxygen, finding use in optode sensors for oxygen.[56]Ruthenium red, [(NH3)5Ru-O-Ru(NH3)4-O-Ru(NH3)5]6+, is a biological stain used to stain polyanionic molecules such as pectin and nucleic acids for light microscopy and electron microscopy.[57] The beta-decaying isotope 106 of ruthenium is used in radiotherapy of eye tumors, mainly malignant melanomas of the uvea.[58] Ruthenium-centered complexes are being researched for possible anticancer properties.[59] Compared with platinum complexes, those of ruthenium show greater resistance to hydrolysis and more selective action on tumors.[citation needed]


Ruthenium tetroxide exposes latent fingerprints by reacting on contact with fatty oils or fats with sebaceous contaminants and producing brown/black ruthenium dioxide pigment.[60]



Catalysis





Halloysite nanotubes intercalated with ruthenium catalytic nanoparticles.[61]


Many ruthenium-containing compounds exhibit useful catalytic properties. The catalysts are conveniently divided into those that are soluble in the reaction medium, homogeneous catalysts, and those that are not, which are called heterogeneous catalysts.


Ruthenium nanoparticles can be formed inside halloysite. This abundant mineral naturally has a structure of rolled nanosheets (nanotubes), which can support both the Ru nanocluster synthesis and its products for subsequent use in industrial catalysis.[61]



Homogeneous catalysis


Solutions containing ruthenium trichloride are highly active for olefin metathesis. Such catalysts are used commercially for the production of polynorbornene for example.[62] Well defined ruthenium carbene and alkylidene complexes show comparable reactivity and provide mechanistic insights into the industrial processes.[63] The Grubbs' catalysts for example have been employed in the preparation of drugs and advanced materials.




RuCl3-catalyzed ring-opening metathesis polymerization reaction giving polynorbornene..


Ruthenium complexes are highly active catalysts for transfer hydrogenations (sometimes referred to as "borrowing hydrogen" reactions). This process is employed for the enantioselective hydrogenation of ketones, aldehydes, and imines. This reaction exploits using chiral ruthenium complexes introduced by Ryoji Noyori.[64] For example, (cymene)Ru(S,S-TsDPEN) catalyzes the hydrogenation of benzil into (R,R)-hydrobenzoin. In this reaction, formate and water/alcohol serve as the source of H2:[65][66]




[RuCl(S,S-TsDPEN)(cymene)]-catalysed (R,R)-hydrobenzoin synthesis (yield 100%, ee >99%)


A Nobel Prize in Chemistry was awarded in 2001 to Ryōji Noyori for contributions to the field of asymmetric hydrogenation.


In 2012, Masaaki Kitano and associates, working with an organic ruthenium catalyst, demonstrated ammonia synthesis using a stable electride as an electron donor and reversible hydrogen store.[67] Small-scale, intermittent production of ammonia, for local agricultural use, may be a viable substitute for electrical grid attachment as a sink for power generated by wind turbines in isolated rural installations.[citation needed]



Heterogeneous catalysis


Ruthenium-promoted cobalt catalysts are used in Fischer-Tropsch synthesis.[68]



Emerging applications


Some ruthenium complexes absorb light throughout the visible spectrum and are being actively researched for solar energy technologies. For example, Ruthenium-based compounds have been used for light absorption in dye-sensitized solar cells, a promising new low-cost solar cell system.[69]


Many ruthenium-based oxides show very unusual properties, such as a quantum critical point behavior,[70] exotic superconductivity (in its strontium ruthenate form),[71] and high-temperature ferromagnetism.[72]



References





  1. ^ Meija, Juris; et al. (2016). "Atomic weights of the elements 2013 (IUPAC Technical Report)". Pure and Applied Chemistry. 88 (3): 265–91. doi:10.1515/pac-2015-0305..mw-parser-output cite.citation{font-style:inherit}.mw-parser-output .citation q{quotes:"""""""'""'"}.mw-parser-output .citation .cs1-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/6/65/Lock-green.svg/9px-Lock-green.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .citation .cs1-lock-limited a,.mw-parser-output .citation .cs1-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/d/d6/Lock-gray-alt-2.svg/9px-Lock-gray-alt-2.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .citation .cs1-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/a/aa/Lock-red-alt-2.svg/9px-Lock-red-alt-2.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration{color:#555}.mw-parser-output .cs1-subscription span,.mw-parser-output .cs1-registration span{border-bottom:1px dotted;cursor:help}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/4/4c/Wikisource-logo.svg/12px-Wikisource-logo.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output code.cs1-code{color:inherit;background:inherit;border:inherit;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;font-size:100%}.mw-parser-output .cs1-visible-error{font-size:100%}.mw-parser-output .cs1-maint{display:none;color:#33aa33;margin-left:0.3em}.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration,.mw-parser-output .cs1-format{font-size:95%}.mw-parser-output .cs1-kern-left,.mw-parser-output .cs1-kern-wl-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right,.mw-parser-output .cs1-kern-wl-right{padding-right:0.2em}


  2. ^ "Ruthenium: ruthenium(I) fluoride compound data". OpenMOPAC.net. Retrieved 2007-12-10.


  3. ^ Lide, D. R., ed. (2005). "Magnetic susceptibility of the elements and inorganic compounds". CRC Handbook of Chemistry and Physics (PDF) (86th ed.). Boca Raton (FL): CRC Press. ISBN 0-8493-0486-5.


  4. ^ Weast, Robert (1984). CRC, Handbook of Chemistry and Physics. Boca Raton, Florida: Chemical Rubber Company Publishing. pp. E110. ISBN 0-8493-0464-4.


  5. ^ "Ruthenium: ruthenium(I) fluoride compound data". OpenMOPAC.net. Retrieved 2007-12-10.


  6. ^ Summary. Ruthenium. platinum.matthey.com, p. 9 (2009)


  7. ^ PGM Market Report. platinum.matthey.com, p. 30 (May 2018)


  8. ^ "Platinum–Group Metals" (PDF). U.S. Geological Survey, Mineral Commodity Summaries. January 2007. Retrieved 2008-09-09.


  9. ^ abc Hamond, C.R. "The elements", in Lide, D. R., ed. (2005). CRC Handbook of Chemistry and Physics (86th ed.). Boca Raton (FL): CRC Press. ISBN 0-8493-0486-5.


  10. ^ Greenwood and Earnshaw, p. 1076


  11. ^ Greenwood and Earnshaw, p. 1078


  12. ^ Greenwood and Earnshaw, p. 1075


  13. ^ ab Greenwood and Earnshaw, p. 1074


  14. ^ Greenwood and Earnshaw, p. 1077


  15. ^ abc Lide, D. R., ed. (2005). CRC Handbook of Chemistry and Physics (86th ed.). Boca Raton (FL): CRC Press. ISBN 0-8493-0486-5. Section 11, Table of the Isotopes


  16. ^ abc Audi, Georges; Bersillon, Olivier; Blachot, Jean; Wapstra, Aaldert Hendrik (2003), "The NUBASE evaluation of nuclear and decay properties", Nuclear Physics A, 729: 3–128, Bibcode:2003NuPhA.729....3A, doi:10.1016/j.nuclphysa.2003.11.001


  17. ^ abcd Emsley, J. (2003). "Ruthenium". Nature's Building Blocks: An A-Z Guide to the Elements. Oxford, England, UK: Oxford University Press. pp. 368–370. ISBN 978-0-19-850340-8.


  18. ^ ab Greenwood and Earnshaw, p. 1071


  19. ^ abc George, Micheal W. "2006 Minerals Yearbook: Platinum-Group Metals" (PDF). United States Geological Survey USGS. Retrieved 2008-09-16.


  20. ^ ab "Commodity Report: Platinum-Group Metals" (PDF). United States Geological Survey USGS. Retrieved 2008-09-16.


  21. ^ Hartman, H. L.; Britton, S. G., eds. (1992). SME mining engineering handbook. Littleton, Colo.: Society for Mining, Metallurgy, and Exploration. p. 69. ISBN 978-0-87335-100-3.


  22. ^ Harris, Donald C.; Cabri, L. J. (1973). "The nomenclature of the natural alloys of osmium, iridium and ruthenium based on new compositional data of alloys from world-wide occurrences". The Canadian Mineralogist. 12 (2): 104–112.


  23. ^ Renner, H.; Schlamp, G.; Kleinwächter, I.; Drost, E.; Lüschow, H. M.; Tews, P.; Panster, P.; Diehl, M.; Lang, J.; Kreuzer, T.; Knödler, A.; Starz, K. A.; Dermann, K.; Rothaut, J.; Drieselman, R. (2002). "Platinum group metals and compounds". Ullmann's Encyclopedia of Industrial Chemistry. Wiley. doi:10.1002/14356007.a21_075. ISBN 978-3527306732.


  24. ^ Seymour, R. J.; O'Farrelly, J. I. (2001). "Platinum-group metals". Kirk Othmer Encyclopedia of Chemical Technology. Wiley. doi:10.1002/0471238961.1612012019052513.a01.pub2. ISBN 978-0471238966.


  25. ^ Gilchrist, Raleigh (1943). "The Platinum Metals". Chemical Reviews. 32 (3): 277–372. doi:10.1021/cr60103a002.


  26. ^ abc Cotton, Simon (1997). Chemistry of Precious Metals. Springer-Verlag New York, LLC. pp. 1–20. ISBN 978-0-7514-0413-5.


  27. ^ ab Hunt, L. B.; Lever, F. M. (1969). "Platinum Metals: A Survey of Productive Resources to industrial Uses" (PDF). Platinum Metals Review. 13 (4): 126–138.


  28. ^ Brown, G.M.; Butler, J.H. (1997). "New method for the characterization of domain morphology of polymer blends using ruthenium tetroxide staining and low voltage scanning electron microscopy (LVSEM)". Polymer. 38 (15): 3937. doi:10.1016/S0032-3861(96)00962-7.


  29. ^ Greenwood, N. N.; & Earnshaw, A. (1997). Chemistry of the Elements (2nd Edn.), Oxford:Butterworth-Heinemann.
    ISBN 0-7506-3365-4.



  30. ^ ab Greenwood and Earnshaw, pp. 1080–1


  31. ^ ab Greenwood and Earnshaw, p. 1082


  32. ^ abc Greenwood and Earnshaw, p. 1083


  33. ^ ab Greenwood and Earnshaw, p. 1084


  34. ^ Hartwig, J. F. Organotransition Metal Chemistry, from Bonding to Catalysis, University Science Books: New York, 2010.
    ISBN 1-891389-53-X



  35. ^ ab Weeks, Mary Elvira (1932). "The discovery of the elements. VIII. The platinum metals". Journal of Chemical Education. 9 (6): 1017. Bibcode:1932JChEd...9.1017W. doi:10.1021/ed009p1017.


  36. ^ Raub, Christoph J. (2004). "The Minting of Platinum Roubles. Part I: History and Current Investigations". 48 (2): 66–69.
    Archive



  37. ^ Jędrzej Śniadecki (1808). Rosprawa o nowym metallu w surowey platynie odkrytym (in Polish). Wilno: Nakł. i Drukiem J. Zawadzkiego. (Dissertation about the new metal discovered in raw platinum.)


  38. ^ "New Metals in the Uralian Platina". The Philosophical Magazine. 2 (11): 391–392. 1827. doi:10.1080/14786442708674516.


  39. ^ abcde Pitchkov, V. N. (1996). "The Discovery of Ruthenium". Platinum Metals Review. 40 (4): 181–188.


  40. ^ Osann, Gottfried (1829). "Berichtigung, meine Untersuchung des uralschen Platins betreffend". Poggendorffs Annalen der Physik und Chemie. 15: 158. doi:10.1002/andp.18290910119.


  41. ^ Osann, Gottfried (1828). "Fortsetzung der Untersuchung des Platins vom Ural". Poggendorffs Annalen der Physik und Chemie. 14 (6): 283–297. Bibcode:1828AnP....89..283O. doi:10.1002/andp.18280890609. The original sentence on p. 339 reads: "Da dieses Metall, welches ich nach den so eben beschriebenen Eigenschaften als ein neues glaube annehmen zu müssen, sich in größerer Menge als das früher erwähnte in dem uralschen Platin befindet, und auch durch seinen schönen, dem Golde ähnlichen metallischen Glanz sich mehr empfiehlt, so glaube ich, daß der Vorschlag, das zuerst aufgefundene neue Metall Ruthenium zu nennen, besser auf dieses angewendet werden könne."


  42. ^ Claus, Karl (1845). "О способе добывания чистой платины из руд". Горный журнал (Mining Journal) (in Russian). 7 (3): 157–163.


  43. ^ Rao, C; Trivedi, D. (2005). "Chemical and electrochemical depositions of platinum group metals and their applications". Coordination Chemistry Reviews. 249 (5–6): 613. doi:10.1016/j.ccr.2004.08.015.


  44. ^ Weisberg, A (1999). "Ruthenium plating". Metal Finishing. 97: 297. doi:10.1016/S0026-0576(00)83089-5.


  45. ^ Prepared under the direction of the ASM International Handbook Committee; Merrill L. Minges, technical chairman (1989). Electronic materials handbook. Materials Park, OH: ASM International. p. 184. ISBN 978-0-87170-285-2.


  46. ^ Busana, M. G.; Prudenziati, M.; Hormadaly, J. (2006). "Microstructure development and electrical properties of RuO2-based lead-free thick film resistors". Journal of Materials Science: Materials in Electronics. 17 (11): 951. doi:10.1007/s10854-006-0036-x.


  47. ^ Rane, Sunit; Prudenziati, Maria; Morten, Bruno (2007). "Environment friendly perovskite ruthenate based thick film resistors". Materials Letters. 61 (2): 595. doi:10.1016/j.matlet.2006.05.015.


  48. ^ Slade, Paul G., ed. (1999). Electrical contacts : principles and applications. New York, NY: Dekker. pp. 184, 345. ISBN 978-0-8247-1934-0.


  49. ^ Schutz, R. W. (1996). "Ruthenium Enhanced Titanium Alloys" (PDF). Platinum Metals Review. 40 (2): 54–61.


  50. ^ "Fourth generation nickel base single crystal superalloy. TMS-138 / 138A" (PDF). High Temperature Materials Center, National Institute for Materials Science, Japan. July 2006.


  51. ^ Koizumi, Yutaka; et al. "Development of a Next-Generation Ni-base Single Crystal Superalloy" (PDF). Proceedings of the International Gas Turbine Congress, Tokyo 2–7 November 2003.


  52. ^ Walston, S.; Cetel, A.; MacKay, R.; O'Hara, K.; Duhl, D.; Dreshfield, R. (December 2004). "Joint Development of a Fourth Generation Single Crystal Superalloy" (PDF). NASA.


  53. ^ Bondarenko, Yu. A.; Kablov, E. N.; Surova, V. A.; Echin, A. B. (2006). "Effect of high-gradient directed crystallization on the structure and properties of rhenium-bearing single-crystal alloy". Metal Science and Heat Treatment. 48 (7–8): 360. Bibcode:2006MSHT...48..360B. doi:10.1007/s11041-006-0099-6.


  54. ^ Mottishaw, J. (1999). "Notes from the Nib Works—Where's the Iridium?". The PENnant. XIII (2).


  55. ^ Cardarelli, François (2008). "Dimensionally Stable Anodes (DSA) for Chlorine Evolution". Materials Handbook: A Concise Desktop Reference. London: Springer. pp. 581–582. ISBN 978-1-84628-668-1.


  56. ^ Varney, Mark S. (2000). "Oxygen Microoptode". Chemical sensors in oceanography. Amsterdam: Gordon & Breach. p. 150. ISBN 978-90-5699-255-2.


  57. ^ Hayat, M. A. (1993). "Ruthenium red". Stains and cytochemical methods. New York, NY: Plenum Press. pp. 305–310. ISBN 978-0-306-44294-0.


  58. ^ Wiegel, T. (1997). Radiotherapy of ocular disease, Ausgabe 13020. Basel, Freiburg: Karger. ISBN 978-3-8055-6392-5.


  59. ^ Richards, A. D.; Rodger, A. (2007). "Synthetic metallomolecules as agents for the control of DNA structure". Chem. Soc. Rev. 36 (3): 471–483. doi:10.1039/b609495c. PMID 17325786.


  60. ^ NCJRS Abstract – National Criminal Justice Reference Service. Ncjrs.gov. Retrieved on 2017-02-28.


  61. ^ ab Vinokurov, Vladimir A.; Stavitskaya, Anna V.; Chudakov, Yaroslav A.; Ivanov, Evgenii V.; Shrestha, Lok Kumar; Ariga, Katsuhiko; Darrat, Yusuf A.; Lvov, Yuri M. (2017). "Formation of metal clusters in halloysite clay nanotubes". Science and Technology of Advanced Materials. 18 (1): 147–151. Bibcode:2017STAdM..18..147V. doi:10.1080/14686996.2016.1278352. PMC 5402758. PMID 28458738.


  62. ^ Delaude, Lionel and Noels, Alfred F. (2005). "Metathesis". Kirk-Othmer Encyclopedia of Chemical Technology. Kirk-Othmer Encyclopedia of Chemical Technology. Weinheim: Wiley-VCH. doi:10.1002/0471238961.metanoel.a01. ISBN 978-0471238966.CS1 maint: Uses authors parameter (link)


  63. ^ Fürstner, Alois (2000). "Olefin Metathesis and Beyond". Angewandte Chemie International Edition. 39 (17): 3012–3043. doi:10.1002/1521-3773(20000901)39:17<3012::AID-ANIE3012>3.0.CO;2-G. PMID 11028025.


  64. ^ Noyori, R.; Ohkuma, T.; Kitamura, M.; Takaya, H.; Sayo, N.; Kumobayashi, H.; Akutagawa, S. (1987), "Asymmetric hydrogenation of .beta.-keto carboxylic esters. A practical, purely chemical access to .beta.-hydroxy esters in high enantiomeric purity", Journal of the American Chemical Society, 109 (19): 5856, doi:10.1021/ja00253a051


  65. ^ Ikariya, Takao; Hashiguchi, Shohei; Murata, Kunihiko and Noyori, Ryōji (2005). "Preparation of Optically Active (R,R)-Hydrobenzoin from Benzoin or Benzil". Organic Syntheses: 10.CS1 maint: Multiple names: authors list (link)


  66. ^ Chen, Fei (2015). "Synthesis of Optically Active 1,2,3,4-Tetrahydroquinolines via Asymmetric Hydrogenation Using Iridium-Diamine Catalyst". Org. Synth. 92: 213–226. doi:10.15227/orgsyn.092.0213.


  67. ^ Kitano, Masaaki; Inoue, Yasunori; Yamazaki, Youhei; Hayashi, Fumitaka; Kanbara, Shinji; Matsuishi, Satoru; Yokoyama, Toshiharu; Kim, Sung-Wng; Hara, Michikazu; Hosono, Hideo (2012). "Ammonia synthesis using a stable electride as an electron donor and reversible hydrogen store". Nature Chemistry. 4 (11): 934–940. Bibcode:2012NatCh...4..934K. doi:10.1038/nchem.1476. PMID 23089869.


  68. ^ Schulz, Hans (1999). "Short history and present trends of Fischer–Tropsch synthesis". Applied Catalysis A: General. 186 (1–2): 3–12. doi:10.1016/S0926-860X(99)00160-X.


  69. ^ Kuang, Daibin; Ito, Seigo; Wenger, Bernard; Klein, Cedric; Moser, Jacques-E; Humphry-Baker, Robin; Zakeeruddin, Shaik M.; Grätzel, Michael (2006). "High Molar Extinction Coefficient Heteroleptic Ruthenium Complexes for Thin Film Dye-Sensitized Solar Cells". Journal of the American Chemical Society. 128 (12): 4146–54. doi:10.1021/ja058540p. PMID 16551124.


  70. ^ Perry, R.; Kitagawa, K.; Grigera, S.; Borzi, R.; MacKenzie, A.; Ishida, K.; Maeno, Y. (2004). "Multiple First-Order Metamagnetic Transitions and Quantum Oscillations in Ultrapure Sr.3Ru2O7". Physical Review Letters. 92 (16): 166602. arXiv:cond-mat/0401371. Bibcode:2004PhRvL..92p6602P. doi:10.1103/PhysRevLett.92.166602. PMID 15169251.


  71. ^ Maeno, Yoshiteru; Rice, T. Maurice; Sigrist, Manfred (2001). "The Intriguing Superconductivity of Strontium Ruthenate" (PDF). Physics Today. 54 (1): 42. Bibcode:2001PhT....54a..42M. doi:10.1063/1.1349611.


  72. ^ Shlyk, Larysa; Kryukov, Sergiy; Schüpp-Niewa, Barbara; Niewa, Rainer; De Long, Lance E. (2008). "High-Temperature Ferromagnetism and Tunable Semiconductivity of (Ba, Sr)M2±xRu4∓xO11 (M = Fe, Co): A New Paradigm for Spintronics". Advanced Materials. 20 (7): 1315. doi:10.1002/adma.200701951.




Bibliography



  • Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.). Butterworth-Heinemann. ISBN 978-0-08-037941-8.


External links












  • Ruthenium at The Periodic Table of Videos (University of Nottingham)

  • Nano-layer of ruthenium stabilizes magnetic sensors













Popular posts from this blog

Guess what letter conforming each word

Run scheduled task as local user group (not BUILTIN)

Port of Spain