ggplot not adopting aes - linetype












0















I am seeing some strange behavior in r, trying to use ggplot.



I cannot recreate the problem with a sample dataset as i can't work out what the problem is with the dataset i am using. Essentially i have two variables from the same dataset and the aes is being applied to one but not the other.



This is the dataframe: temp



temp
# A tibble: 504 x 5
# Groups: continent [6]
continent year urban.pop predicted.estimated.pop pop
<chr> <int> <dbl> <chr> <dbl>
1 Africa 1950 32658962 estimated.pop 32658962
2 Africa 1955 41419217 estimated.pop 41419217
3 Africa 1960 53008425 estimated.pop 53008425
4 Africa 1965 66348577 estimated.pop 66348577
5 Africa 1970 82637370 estimated.pop 82637370
6 Africa 1975 103198989 estimated.pop 103198989
7 Africa 1980 128615954 estimated.pop 128615954
8 Africa 1985 160721947 estimated.pop 160721947
9 Africa 1990 200111296 estimated.pop 200111296
10 Africa 1995 241824184 estimated.pop 241824184


I want to plot this dataframe to look as follows:



ggplot(temp, aes(x = year, y = pop, col = continent, linetype = predicted.estimated.pop)) +
geom_line()


enter image description here



This looks right, but when i change y axis to plot urban.pop i get the following, where the linetype aes has not been applied:



ggplot(temp, aes(x = year, y = urban.pop, col = continent, linetype = predicted.estimated.pop)) +
geom_line()


enter image description here



As can be seen above, both pop and urban.pop are class: dbl. They are also identical:



sum(temp$pop - temp$urban.pop, na.rm = T)
[1] 0


The only thing i can note is that temp is a grouped df:



str(temp)
Classes ‘grouped_df’, ‘tbl_df’, ‘tbl’ and 'data.frame': 504 obs. of 5 variables:
$ continent : chr "Africa" "Africa" "Africa" "Africa" ...
$ year : int 1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 ...
$ urban.pop : num 32658962 41419217 53008425 66348577 82637370 ...
$ predicted.estimated.pop: chr "estimated.pop" "estimated.pop" "estimated.pop" "estimated.pop" ...
$ pop : num 32658962 41419217 53008425 66348577 82637370 ...
- attr(*, "vars")= chr "continent"
- attr(*, "drop")= logi TRUE
- attr(*, "indices")=List of 6
..$ : int 0 1 2 3 4 5 6 7 8 9 ...
..$ : int 21 22 23 24 25 26 27 28 29 30 ...
..$ : int 42 43 44 45 46 47 48 49 50 51 ...
..$ : int 63 64 65 66 67 68 69 70 71 72 ...
..$ : int 84 85 86 87 88 89 90 91 92 93 ...
..$ : int 105 106 107 108 109 110 111 112 113 114 ...
- attr(*, "group_sizes")= int 84 84 84 84 84 84
- attr(*, "biggest_group_size")= int 84
- attr(*, "labels")='data.frame': 6 obs. of 1 variable:
..$ continent: chr "Africa" "Asia" "Europe" "LAC" ...
..- attr(*, "vars")= chr "continent"
..- attr(*, "drop")= logi TRUE


I can't work out why these two variables drive different results for the linetype aes. The reason I need to fix this is i have another variable in the original data set that is behaving the same way as urban.pop.



Can anyone explain this to me, or help resolve the problem?










share|improve this question


















  • 3





    Could you make your problem reproducible by sharing a sample of your data so others can help (please do not use str(), head() or screenshot)? You can use the reprex and datapasta packages to assist you with that. See also Help me Help you & How to make a great R reproducible example?

    – Tung
    Nov 20 '18 at 19:50






  • 2





    Impossible to tell without an actual example for us to run, but my gut reaction would be that there's something about your data that you don't quite understand that means that in the second case the solid and dashed lines are being plotted on top of each other, so the legend is created but you can't see the dashed ones.

    – joran
    Nov 20 '18 at 19:53






  • 1





    running ggplot(temp, aes(x = year, y = urban.pop, col = continent, linetype = predicted.estimated.pop)) + geom_line() + facet_wrap(.~predicted.estimated.pop) might validate @joran's theory

    – Chris
    Nov 20 '18 at 22:02











  • Thanks for all the help everyone. As I sought to sample of my data (apologies for not knowing about dput()), i found that there was an error within the predicted/estimated variabl. The ifelse statement i had used to mutate this was was calculated against year as a chr vector. The pop data was working because of NAs in the dataset which meant, as joran suggested, lines were drawing over one another (not drawing where the NAs were). Getting the data correctly organized solved the problem. I will mark jay.sf answer below as correct as it describes what the data needs to look like.

    – MorrisseyJ
    Nov 21 '18 at 14:42


















0















I am seeing some strange behavior in r, trying to use ggplot.



I cannot recreate the problem with a sample dataset as i can't work out what the problem is with the dataset i am using. Essentially i have two variables from the same dataset and the aes is being applied to one but not the other.



This is the dataframe: temp



temp
# A tibble: 504 x 5
# Groups: continent [6]
continent year urban.pop predicted.estimated.pop pop
<chr> <int> <dbl> <chr> <dbl>
1 Africa 1950 32658962 estimated.pop 32658962
2 Africa 1955 41419217 estimated.pop 41419217
3 Africa 1960 53008425 estimated.pop 53008425
4 Africa 1965 66348577 estimated.pop 66348577
5 Africa 1970 82637370 estimated.pop 82637370
6 Africa 1975 103198989 estimated.pop 103198989
7 Africa 1980 128615954 estimated.pop 128615954
8 Africa 1985 160721947 estimated.pop 160721947
9 Africa 1990 200111296 estimated.pop 200111296
10 Africa 1995 241824184 estimated.pop 241824184


I want to plot this dataframe to look as follows:



ggplot(temp, aes(x = year, y = pop, col = continent, linetype = predicted.estimated.pop)) +
geom_line()


enter image description here



This looks right, but when i change y axis to plot urban.pop i get the following, where the linetype aes has not been applied:



ggplot(temp, aes(x = year, y = urban.pop, col = continent, linetype = predicted.estimated.pop)) +
geom_line()


enter image description here



As can be seen above, both pop and urban.pop are class: dbl. They are also identical:



sum(temp$pop - temp$urban.pop, na.rm = T)
[1] 0


The only thing i can note is that temp is a grouped df:



str(temp)
Classes ‘grouped_df’, ‘tbl_df’, ‘tbl’ and 'data.frame': 504 obs. of 5 variables:
$ continent : chr "Africa" "Africa" "Africa" "Africa" ...
$ year : int 1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 ...
$ urban.pop : num 32658962 41419217 53008425 66348577 82637370 ...
$ predicted.estimated.pop: chr "estimated.pop" "estimated.pop" "estimated.pop" "estimated.pop" ...
$ pop : num 32658962 41419217 53008425 66348577 82637370 ...
- attr(*, "vars")= chr "continent"
- attr(*, "drop")= logi TRUE
- attr(*, "indices")=List of 6
..$ : int 0 1 2 3 4 5 6 7 8 9 ...
..$ : int 21 22 23 24 25 26 27 28 29 30 ...
..$ : int 42 43 44 45 46 47 48 49 50 51 ...
..$ : int 63 64 65 66 67 68 69 70 71 72 ...
..$ : int 84 85 86 87 88 89 90 91 92 93 ...
..$ : int 105 106 107 108 109 110 111 112 113 114 ...
- attr(*, "group_sizes")= int 84 84 84 84 84 84
- attr(*, "biggest_group_size")= int 84
- attr(*, "labels")='data.frame': 6 obs. of 1 variable:
..$ continent: chr "Africa" "Asia" "Europe" "LAC" ...
..- attr(*, "vars")= chr "continent"
..- attr(*, "drop")= logi TRUE


I can't work out why these two variables drive different results for the linetype aes. The reason I need to fix this is i have another variable in the original data set that is behaving the same way as urban.pop.



Can anyone explain this to me, or help resolve the problem?










share|improve this question


















  • 3





    Could you make your problem reproducible by sharing a sample of your data so others can help (please do not use str(), head() or screenshot)? You can use the reprex and datapasta packages to assist you with that. See also Help me Help you & How to make a great R reproducible example?

    – Tung
    Nov 20 '18 at 19:50






  • 2





    Impossible to tell without an actual example for us to run, but my gut reaction would be that there's something about your data that you don't quite understand that means that in the second case the solid and dashed lines are being plotted on top of each other, so the legend is created but you can't see the dashed ones.

    – joran
    Nov 20 '18 at 19:53






  • 1





    running ggplot(temp, aes(x = year, y = urban.pop, col = continent, linetype = predicted.estimated.pop)) + geom_line() + facet_wrap(.~predicted.estimated.pop) might validate @joran's theory

    – Chris
    Nov 20 '18 at 22:02











  • Thanks for all the help everyone. As I sought to sample of my data (apologies for not knowing about dput()), i found that there was an error within the predicted/estimated variabl. The ifelse statement i had used to mutate this was was calculated against year as a chr vector. The pop data was working because of NAs in the dataset which meant, as joran suggested, lines were drawing over one another (not drawing where the NAs were). Getting the data correctly organized solved the problem. I will mark jay.sf answer below as correct as it describes what the data needs to look like.

    – MorrisseyJ
    Nov 21 '18 at 14:42
















0












0








0








I am seeing some strange behavior in r, trying to use ggplot.



I cannot recreate the problem with a sample dataset as i can't work out what the problem is with the dataset i am using. Essentially i have two variables from the same dataset and the aes is being applied to one but not the other.



This is the dataframe: temp



temp
# A tibble: 504 x 5
# Groups: continent [6]
continent year urban.pop predicted.estimated.pop pop
<chr> <int> <dbl> <chr> <dbl>
1 Africa 1950 32658962 estimated.pop 32658962
2 Africa 1955 41419217 estimated.pop 41419217
3 Africa 1960 53008425 estimated.pop 53008425
4 Africa 1965 66348577 estimated.pop 66348577
5 Africa 1970 82637370 estimated.pop 82637370
6 Africa 1975 103198989 estimated.pop 103198989
7 Africa 1980 128615954 estimated.pop 128615954
8 Africa 1985 160721947 estimated.pop 160721947
9 Africa 1990 200111296 estimated.pop 200111296
10 Africa 1995 241824184 estimated.pop 241824184


I want to plot this dataframe to look as follows:



ggplot(temp, aes(x = year, y = pop, col = continent, linetype = predicted.estimated.pop)) +
geom_line()


enter image description here



This looks right, but when i change y axis to plot urban.pop i get the following, where the linetype aes has not been applied:



ggplot(temp, aes(x = year, y = urban.pop, col = continent, linetype = predicted.estimated.pop)) +
geom_line()


enter image description here



As can be seen above, both pop and urban.pop are class: dbl. They are also identical:



sum(temp$pop - temp$urban.pop, na.rm = T)
[1] 0


The only thing i can note is that temp is a grouped df:



str(temp)
Classes ‘grouped_df’, ‘tbl_df’, ‘tbl’ and 'data.frame': 504 obs. of 5 variables:
$ continent : chr "Africa" "Africa" "Africa" "Africa" ...
$ year : int 1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 ...
$ urban.pop : num 32658962 41419217 53008425 66348577 82637370 ...
$ predicted.estimated.pop: chr "estimated.pop" "estimated.pop" "estimated.pop" "estimated.pop" ...
$ pop : num 32658962 41419217 53008425 66348577 82637370 ...
- attr(*, "vars")= chr "continent"
- attr(*, "drop")= logi TRUE
- attr(*, "indices")=List of 6
..$ : int 0 1 2 3 4 5 6 7 8 9 ...
..$ : int 21 22 23 24 25 26 27 28 29 30 ...
..$ : int 42 43 44 45 46 47 48 49 50 51 ...
..$ : int 63 64 65 66 67 68 69 70 71 72 ...
..$ : int 84 85 86 87 88 89 90 91 92 93 ...
..$ : int 105 106 107 108 109 110 111 112 113 114 ...
- attr(*, "group_sizes")= int 84 84 84 84 84 84
- attr(*, "biggest_group_size")= int 84
- attr(*, "labels")='data.frame': 6 obs. of 1 variable:
..$ continent: chr "Africa" "Asia" "Europe" "LAC" ...
..- attr(*, "vars")= chr "continent"
..- attr(*, "drop")= logi TRUE


I can't work out why these two variables drive different results for the linetype aes. The reason I need to fix this is i have another variable in the original data set that is behaving the same way as urban.pop.



Can anyone explain this to me, or help resolve the problem?










share|improve this question














I am seeing some strange behavior in r, trying to use ggplot.



I cannot recreate the problem with a sample dataset as i can't work out what the problem is with the dataset i am using. Essentially i have two variables from the same dataset and the aes is being applied to one but not the other.



This is the dataframe: temp



temp
# A tibble: 504 x 5
# Groups: continent [6]
continent year urban.pop predicted.estimated.pop pop
<chr> <int> <dbl> <chr> <dbl>
1 Africa 1950 32658962 estimated.pop 32658962
2 Africa 1955 41419217 estimated.pop 41419217
3 Africa 1960 53008425 estimated.pop 53008425
4 Africa 1965 66348577 estimated.pop 66348577
5 Africa 1970 82637370 estimated.pop 82637370
6 Africa 1975 103198989 estimated.pop 103198989
7 Africa 1980 128615954 estimated.pop 128615954
8 Africa 1985 160721947 estimated.pop 160721947
9 Africa 1990 200111296 estimated.pop 200111296
10 Africa 1995 241824184 estimated.pop 241824184


I want to plot this dataframe to look as follows:



ggplot(temp, aes(x = year, y = pop, col = continent, linetype = predicted.estimated.pop)) +
geom_line()


enter image description here



This looks right, but when i change y axis to plot urban.pop i get the following, where the linetype aes has not been applied:



ggplot(temp, aes(x = year, y = urban.pop, col = continent, linetype = predicted.estimated.pop)) +
geom_line()


enter image description here



As can be seen above, both pop and urban.pop are class: dbl. They are also identical:



sum(temp$pop - temp$urban.pop, na.rm = T)
[1] 0


The only thing i can note is that temp is a grouped df:



str(temp)
Classes ‘grouped_df’, ‘tbl_df’, ‘tbl’ and 'data.frame': 504 obs. of 5 variables:
$ continent : chr "Africa" "Africa" "Africa" "Africa" ...
$ year : int 1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 ...
$ urban.pop : num 32658962 41419217 53008425 66348577 82637370 ...
$ predicted.estimated.pop: chr "estimated.pop" "estimated.pop" "estimated.pop" "estimated.pop" ...
$ pop : num 32658962 41419217 53008425 66348577 82637370 ...
- attr(*, "vars")= chr "continent"
- attr(*, "drop")= logi TRUE
- attr(*, "indices")=List of 6
..$ : int 0 1 2 3 4 5 6 7 8 9 ...
..$ : int 21 22 23 24 25 26 27 28 29 30 ...
..$ : int 42 43 44 45 46 47 48 49 50 51 ...
..$ : int 63 64 65 66 67 68 69 70 71 72 ...
..$ : int 84 85 86 87 88 89 90 91 92 93 ...
..$ : int 105 106 107 108 109 110 111 112 113 114 ...
- attr(*, "group_sizes")= int 84 84 84 84 84 84
- attr(*, "biggest_group_size")= int 84
- attr(*, "labels")='data.frame': 6 obs. of 1 variable:
..$ continent: chr "Africa" "Asia" "Europe" "LAC" ...
..- attr(*, "vars")= chr "continent"
..- attr(*, "drop")= logi TRUE


I can't work out why these two variables drive different results for the linetype aes. The reason I need to fix this is i have another variable in the original data set that is behaving the same way as urban.pop.



Can anyone explain this to me, or help resolve the problem?







r ggplot2






share|improve this question













share|improve this question











share|improve this question




share|improve this question










asked Nov 20 '18 at 19:45









MorrisseyJMorrisseyJ

1857




1857








  • 3





    Could you make your problem reproducible by sharing a sample of your data so others can help (please do not use str(), head() or screenshot)? You can use the reprex and datapasta packages to assist you with that. See also Help me Help you & How to make a great R reproducible example?

    – Tung
    Nov 20 '18 at 19:50






  • 2





    Impossible to tell without an actual example for us to run, but my gut reaction would be that there's something about your data that you don't quite understand that means that in the second case the solid and dashed lines are being plotted on top of each other, so the legend is created but you can't see the dashed ones.

    – joran
    Nov 20 '18 at 19:53






  • 1





    running ggplot(temp, aes(x = year, y = urban.pop, col = continent, linetype = predicted.estimated.pop)) + geom_line() + facet_wrap(.~predicted.estimated.pop) might validate @joran's theory

    – Chris
    Nov 20 '18 at 22:02











  • Thanks for all the help everyone. As I sought to sample of my data (apologies for not knowing about dput()), i found that there was an error within the predicted/estimated variabl. The ifelse statement i had used to mutate this was was calculated against year as a chr vector. The pop data was working because of NAs in the dataset which meant, as joran suggested, lines were drawing over one another (not drawing where the NAs were). Getting the data correctly organized solved the problem. I will mark jay.sf answer below as correct as it describes what the data needs to look like.

    – MorrisseyJ
    Nov 21 '18 at 14:42
















  • 3





    Could you make your problem reproducible by sharing a sample of your data so others can help (please do not use str(), head() or screenshot)? You can use the reprex and datapasta packages to assist you with that. See also Help me Help you & How to make a great R reproducible example?

    – Tung
    Nov 20 '18 at 19:50






  • 2





    Impossible to tell without an actual example for us to run, but my gut reaction would be that there's something about your data that you don't quite understand that means that in the second case the solid and dashed lines are being plotted on top of each other, so the legend is created but you can't see the dashed ones.

    – joran
    Nov 20 '18 at 19:53






  • 1





    running ggplot(temp, aes(x = year, y = urban.pop, col = continent, linetype = predicted.estimated.pop)) + geom_line() + facet_wrap(.~predicted.estimated.pop) might validate @joran's theory

    – Chris
    Nov 20 '18 at 22:02











  • Thanks for all the help everyone. As I sought to sample of my data (apologies for not knowing about dput()), i found that there was an error within the predicted/estimated variabl. The ifelse statement i had used to mutate this was was calculated against year as a chr vector. The pop data was working because of NAs in the dataset which meant, as joran suggested, lines were drawing over one another (not drawing where the NAs were). Getting the data correctly organized solved the problem. I will mark jay.sf answer below as correct as it describes what the data needs to look like.

    – MorrisseyJ
    Nov 21 '18 at 14:42










3




3





Could you make your problem reproducible by sharing a sample of your data so others can help (please do not use str(), head() or screenshot)? You can use the reprex and datapasta packages to assist you with that. See also Help me Help you & How to make a great R reproducible example?

– Tung
Nov 20 '18 at 19:50





Could you make your problem reproducible by sharing a sample of your data so others can help (please do not use str(), head() or screenshot)? You can use the reprex and datapasta packages to assist you with that. See also Help me Help you & How to make a great R reproducible example?

– Tung
Nov 20 '18 at 19:50




2




2





Impossible to tell without an actual example for us to run, but my gut reaction would be that there's something about your data that you don't quite understand that means that in the second case the solid and dashed lines are being plotted on top of each other, so the legend is created but you can't see the dashed ones.

– joran
Nov 20 '18 at 19:53





Impossible to tell without an actual example for us to run, but my gut reaction would be that there's something about your data that you don't quite understand that means that in the second case the solid and dashed lines are being plotted on top of each other, so the legend is created but you can't see the dashed ones.

– joran
Nov 20 '18 at 19:53




1




1





running ggplot(temp, aes(x = year, y = urban.pop, col = continent, linetype = predicted.estimated.pop)) + geom_line() + facet_wrap(.~predicted.estimated.pop) might validate @joran's theory

– Chris
Nov 20 '18 at 22:02





running ggplot(temp, aes(x = year, y = urban.pop, col = continent, linetype = predicted.estimated.pop)) + geom_line() + facet_wrap(.~predicted.estimated.pop) might validate @joran's theory

– Chris
Nov 20 '18 at 22:02













Thanks for all the help everyone. As I sought to sample of my data (apologies for not knowing about dput()), i found that there was an error within the predicted/estimated variabl. The ifelse statement i had used to mutate this was was calculated against year as a chr vector. The pop data was working because of NAs in the dataset which meant, as joran suggested, lines were drawing over one another (not drawing where the NAs were). Getting the data correctly organized solved the problem. I will mark jay.sf answer below as correct as it describes what the data needs to look like.

– MorrisseyJ
Nov 21 '18 at 14:42







Thanks for all the help everyone. As I sought to sample of my data (apologies for not knowing about dput()), i found that there was an error within the predicted/estimated variabl. The ifelse statement i had used to mutate this was was calculated against year as a chr vector. The pop data was working because of NAs in the dataset which meant, as joran suggested, lines were drawing over one another (not drawing where the NAs were). Getting the data correctly organized solved the problem. I will mark jay.sf answer below as correct as it describes what the data needs to look like.

– MorrisseyJ
Nov 21 '18 at 14:42














1 Answer
1






active

oldest

votes


















2














I can't really reproduce your problem, but I've added a data example similar to yours. Maybe by comparing you find the knot.



library(ggplot2)
p1 <- ggplot(temp, aes(x=year, y=pop, col=continent,
linetype=predicted.estimated.pop)) +
geom_line()
p2 <- ggplot(temp, aes(x=year, y=urban.pop, col=continent,
linetype=predicted.estimated.pop)) +
geom_line()
egg::ggarrange(p1, p2)


Yields:



enter image description here



Data



> dput(temp)
structure(list(continent = c("Africa", "Africa", "Africa", "Africa",
"Africa", "Asia", "Asia", "Asia", "Asia", "Asia", "Europe", "Europe",
"Europe", "Europe", "Europe", "Africa", "Africa", "Africa", "Africa",
"Africa", "Asia", "Asia", "Asia", "Asia", "Asia", "Europe", "Europe",
"Europe", "Europe", "Europe"), year = c(1995, 2000, 2005, 2010,
2015, 1995, 2000, 2005, 2010, 2015, 1995, 2000, 2005, 2010, 2015,
2015, 2020, 2025, 2030, 2035, 2015, 2020, 2025, 2030, 2035, 2015,
2020, 2025, 2030, 2035), urban.pop = c(30806083, 46209124.25,
61612165.5, 77015206.75, 92418248, 105455596, 184545293, 263634990,
342724687, 421814384, 24760494, 37140741, 49520988, 61901235,
74281482, 92418248, 115522810, 138627372, 161731934, 184836496,
421814384, 527267980, 632721576, 738175172, 843628768, 74281482,
92851852.5, 111422223, 129992593.5, 148562964), predicted.estimated.pop = c("estimated.pop",
"estimated.pop", "estimated.pop", "estimated.pop", "estimated.pop",
"estimated.pop", "estimated.pop", "estimated.pop", "estimated.pop",
"estimated.pop", "estimated.pop", "estimated.pop", "estimated.pop",
"estimated.pop", "estimated.pop", "predicted.pop", "predicted.pop",
"predicted.pop", "predicted.pop", "predicted.pop", "predicted.pop",
"predicted.pop", "predicted.pop", "predicted.pop", "predicted.pop",
"predicted.pop", "predicted.pop", "predicted.pop", "predicted.pop",
"predicted.pop"), pop = c(30806083, 46209124.25, 61612165.5,
77015206.75, 92418248, 105455596, 184545293, 263634990, 342724687,
421814384, 24760494, 37140741, 49520988, 61901235, 74281482,
92418248, 115522810, 138627372, 161731934, 184836496, 421814384,
527267980, 632721576, 738175172, 843628768, 74281482, 92851852.5,
111422223, 129992593.5, 148562964)), row.names = c(NA, -30L), class = "data.frame")

> str(temp)
'data.frame': 30 obs. of 5 variables:
$ continent : chr "Africa" "Africa" "Africa" "Africa" ...
$ year : num 1995 2000 2005 2010 2015 ...
$ urban.pop : num 30806083 46209124 61612166 77015207 92418248 ...
$ predicted.estimated.pop: chr "estimated.pop" "estimated.pop" "estimated.pop" "estimated.pop" ...
$ pop : num 30806083 46209124 61612166 77015207 92418248 ...





share|improve this answer
























  • This works. Error was on my end. Get the data to look like this and everything will work.

    – MorrisseyJ
    Nov 21 '18 at 14:45











  • Cool. Thanks for your feedback.

    – jay.sf
    Nov 21 '18 at 15:18











Your Answer






StackExchange.ifUsing("editor", function () {
StackExchange.using("externalEditor", function () {
StackExchange.using("snippets", function () {
StackExchange.snippets.init();
});
});
}, "code-snippets");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "1"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53400464%2fggplot-not-adopting-aes-linetype%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes









2














I can't really reproduce your problem, but I've added a data example similar to yours. Maybe by comparing you find the knot.



library(ggplot2)
p1 <- ggplot(temp, aes(x=year, y=pop, col=continent,
linetype=predicted.estimated.pop)) +
geom_line()
p2 <- ggplot(temp, aes(x=year, y=urban.pop, col=continent,
linetype=predicted.estimated.pop)) +
geom_line()
egg::ggarrange(p1, p2)


Yields:



enter image description here



Data



> dput(temp)
structure(list(continent = c("Africa", "Africa", "Africa", "Africa",
"Africa", "Asia", "Asia", "Asia", "Asia", "Asia", "Europe", "Europe",
"Europe", "Europe", "Europe", "Africa", "Africa", "Africa", "Africa",
"Africa", "Asia", "Asia", "Asia", "Asia", "Asia", "Europe", "Europe",
"Europe", "Europe", "Europe"), year = c(1995, 2000, 2005, 2010,
2015, 1995, 2000, 2005, 2010, 2015, 1995, 2000, 2005, 2010, 2015,
2015, 2020, 2025, 2030, 2035, 2015, 2020, 2025, 2030, 2035, 2015,
2020, 2025, 2030, 2035), urban.pop = c(30806083, 46209124.25,
61612165.5, 77015206.75, 92418248, 105455596, 184545293, 263634990,
342724687, 421814384, 24760494, 37140741, 49520988, 61901235,
74281482, 92418248, 115522810, 138627372, 161731934, 184836496,
421814384, 527267980, 632721576, 738175172, 843628768, 74281482,
92851852.5, 111422223, 129992593.5, 148562964), predicted.estimated.pop = c("estimated.pop",
"estimated.pop", "estimated.pop", "estimated.pop", "estimated.pop",
"estimated.pop", "estimated.pop", "estimated.pop", "estimated.pop",
"estimated.pop", "estimated.pop", "estimated.pop", "estimated.pop",
"estimated.pop", "estimated.pop", "predicted.pop", "predicted.pop",
"predicted.pop", "predicted.pop", "predicted.pop", "predicted.pop",
"predicted.pop", "predicted.pop", "predicted.pop", "predicted.pop",
"predicted.pop", "predicted.pop", "predicted.pop", "predicted.pop",
"predicted.pop"), pop = c(30806083, 46209124.25, 61612165.5,
77015206.75, 92418248, 105455596, 184545293, 263634990, 342724687,
421814384, 24760494, 37140741, 49520988, 61901235, 74281482,
92418248, 115522810, 138627372, 161731934, 184836496, 421814384,
527267980, 632721576, 738175172, 843628768, 74281482, 92851852.5,
111422223, 129992593.5, 148562964)), row.names = c(NA, -30L), class = "data.frame")

> str(temp)
'data.frame': 30 obs. of 5 variables:
$ continent : chr "Africa" "Africa" "Africa" "Africa" ...
$ year : num 1995 2000 2005 2010 2015 ...
$ urban.pop : num 30806083 46209124 61612166 77015207 92418248 ...
$ predicted.estimated.pop: chr "estimated.pop" "estimated.pop" "estimated.pop" "estimated.pop" ...
$ pop : num 30806083 46209124 61612166 77015207 92418248 ...





share|improve this answer
























  • This works. Error was on my end. Get the data to look like this and everything will work.

    – MorrisseyJ
    Nov 21 '18 at 14:45











  • Cool. Thanks for your feedback.

    – jay.sf
    Nov 21 '18 at 15:18
















2














I can't really reproduce your problem, but I've added a data example similar to yours. Maybe by comparing you find the knot.



library(ggplot2)
p1 <- ggplot(temp, aes(x=year, y=pop, col=continent,
linetype=predicted.estimated.pop)) +
geom_line()
p2 <- ggplot(temp, aes(x=year, y=urban.pop, col=continent,
linetype=predicted.estimated.pop)) +
geom_line()
egg::ggarrange(p1, p2)


Yields:



enter image description here



Data



> dput(temp)
structure(list(continent = c("Africa", "Africa", "Africa", "Africa",
"Africa", "Asia", "Asia", "Asia", "Asia", "Asia", "Europe", "Europe",
"Europe", "Europe", "Europe", "Africa", "Africa", "Africa", "Africa",
"Africa", "Asia", "Asia", "Asia", "Asia", "Asia", "Europe", "Europe",
"Europe", "Europe", "Europe"), year = c(1995, 2000, 2005, 2010,
2015, 1995, 2000, 2005, 2010, 2015, 1995, 2000, 2005, 2010, 2015,
2015, 2020, 2025, 2030, 2035, 2015, 2020, 2025, 2030, 2035, 2015,
2020, 2025, 2030, 2035), urban.pop = c(30806083, 46209124.25,
61612165.5, 77015206.75, 92418248, 105455596, 184545293, 263634990,
342724687, 421814384, 24760494, 37140741, 49520988, 61901235,
74281482, 92418248, 115522810, 138627372, 161731934, 184836496,
421814384, 527267980, 632721576, 738175172, 843628768, 74281482,
92851852.5, 111422223, 129992593.5, 148562964), predicted.estimated.pop = c("estimated.pop",
"estimated.pop", "estimated.pop", "estimated.pop", "estimated.pop",
"estimated.pop", "estimated.pop", "estimated.pop", "estimated.pop",
"estimated.pop", "estimated.pop", "estimated.pop", "estimated.pop",
"estimated.pop", "estimated.pop", "predicted.pop", "predicted.pop",
"predicted.pop", "predicted.pop", "predicted.pop", "predicted.pop",
"predicted.pop", "predicted.pop", "predicted.pop", "predicted.pop",
"predicted.pop", "predicted.pop", "predicted.pop", "predicted.pop",
"predicted.pop"), pop = c(30806083, 46209124.25, 61612165.5,
77015206.75, 92418248, 105455596, 184545293, 263634990, 342724687,
421814384, 24760494, 37140741, 49520988, 61901235, 74281482,
92418248, 115522810, 138627372, 161731934, 184836496, 421814384,
527267980, 632721576, 738175172, 843628768, 74281482, 92851852.5,
111422223, 129992593.5, 148562964)), row.names = c(NA, -30L), class = "data.frame")

> str(temp)
'data.frame': 30 obs. of 5 variables:
$ continent : chr "Africa" "Africa" "Africa" "Africa" ...
$ year : num 1995 2000 2005 2010 2015 ...
$ urban.pop : num 30806083 46209124 61612166 77015207 92418248 ...
$ predicted.estimated.pop: chr "estimated.pop" "estimated.pop" "estimated.pop" "estimated.pop" ...
$ pop : num 30806083 46209124 61612166 77015207 92418248 ...





share|improve this answer
























  • This works. Error was on my end. Get the data to look like this and everything will work.

    – MorrisseyJ
    Nov 21 '18 at 14:45











  • Cool. Thanks for your feedback.

    – jay.sf
    Nov 21 '18 at 15:18














2












2








2







I can't really reproduce your problem, but I've added a data example similar to yours. Maybe by comparing you find the knot.



library(ggplot2)
p1 <- ggplot(temp, aes(x=year, y=pop, col=continent,
linetype=predicted.estimated.pop)) +
geom_line()
p2 <- ggplot(temp, aes(x=year, y=urban.pop, col=continent,
linetype=predicted.estimated.pop)) +
geom_line()
egg::ggarrange(p1, p2)


Yields:



enter image description here



Data



> dput(temp)
structure(list(continent = c("Africa", "Africa", "Africa", "Africa",
"Africa", "Asia", "Asia", "Asia", "Asia", "Asia", "Europe", "Europe",
"Europe", "Europe", "Europe", "Africa", "Africa", "Africa", "Africa",
"Africa", "Asia", "Asia", "Asia", "Asia", "Asia", "Europe", "Europe",
"Europe", "Europe", "Europe"), year = c(1995, 2000, 2005, 2010,
2015, 1995, 2000, 2005, 2010, 2015, 1995, 2000, 2005, 2010, 2015,
2015, 2020, 2025, 2030, 2035, 2015, 2020, 2025, 2030, 2035, 2015,
2020, 2025, 2030, 2035), urban.pop = c(30806083, 46209124.25,
61612165.5, 77015206.75, 92418248, 105455596, 184545293, 263634990,
342724687, 421814384, 24760494, 37140741, 49520988, 61901235,
74281482, 92418248, 115522810, 138627372, 161731934, 184836496,
421814384, 527267980, 632721576, 738175172, 843628768, 74281482,
92851852.5, 111422223, 129992593.5, 148562964), predicted.estimated.pop = c("estimated.pop",
"estimated.pop", "estimated.pop", "estimated.pop", "estimated.pop",
"estimated.pop", "estimated.pop", "estimated.pop", "estimated.pop",
"estimated.pop", "estimated.pop", "estimated.pop", "estimated.pop",
"estimated.pop", "estimated.pop", "predicted.pop", "predicted.pop",
"predicted.pop", "predicted.pop", "predicted.pop", "predicted.pop",
"predicted.pop", "predicted.pop", "predicted.pop", "predicted.pop",
"predicted.pop", "predicted.pop", "predicted.pop", "predicted.pop",
"predicted.pop"), pop = c(30806083, 46209124.25, 61612165.5,
77015206.75, 92418248, 105455596, 184545293, 263634990, 342724687,
421814384, 24760494, 37140741, 49520988, 61901235, 74281482,
92418248, 115522810, 138627372, 161731934, 184836496, 421814384,
527267980, 632721576, 738175172, 843628768, 74281482, 92851852.5,
111422223, 129992593.5, 148562964)), row.names = c(NA, -30L), class = "data.frame")

> str(temp)
'data.frame': 30 obs. of 5 variables:
$ continent : chr "Africa" "Africa" "Africa" "Africa" ...
$ year : num 1995 2000 2005 2010 2015 ...
$ urban.pop : num 30806083 46209124 61612166 77015207 92418248 ...
$ predicted.estimated.pop: chr "estimated.pop" "estimated.pop" "estimated.pop" "estimated.pop" ...
$ pop : num 30806083 46209124 61612166 77015207 92418248 ...





share|improve this answer













I can't really reproduce your problem, but I've added a data example similar to yours. Maybe by comparing you find the knot.



library(ggplot2)
p1 <- ggplot(temp, aes(x=year, y=pop, col=continent,
linetype=predicted.estimated.pop)) +
geom_line()
p2 <- ggplot(temp, aes(x=year, y=urban.pop, col=continent,
linetype=predicted.estimated.pop)) +
geom_line()
egg::ggarrange(p1, p2)


Yields:



enter image description here



Data



> dput(temp)
structure(list(continent = c("Africa", "Africa", "Africa", "Africa",
"Africa", "Asia", "Asia", "Asia", "Asia", "Asia", "Europe", "Europe",
"Europe", "Europe", "Europe", "Africa", "Africa", "Africa", "Africa",
"Africa", "Asia", "Asia", "Asia", "Asia", "Asia", "Europe", "Europe",
"Europe", "Europe", "Europe"), year = c(1995, 2000, 2005, 2010,
2015, 1995, 2000, 2005, 2010, 2015, 1995, 2000, 2005, 2010, 2015,
2015, 2020, 2025, 2030, 2035, 2015, 2020, 2025, 2030, 2035, 2015,
2020, 2025, 2030, 2035), urban.pop = c(30806083, 46209124.25,
61612165.5, 77015206.75, 92418248, 105455596, 184545293, 263634990,
342724687, 421814384, 24760494, 37140741, 49520988, 61901235,
74281482, 92418248, 115522810, 138627372, 161731934, 184836496,
421814384, 527267980, 632721576, 738175172, 843628768, 74281482,
92851852.5, 111422223, 129992593.5, 148562964), predicted.estimated.pop = c("estimated.pop",
"estimated.pop", "estimated.pop", "estimated.pop", "estimated.pop",
"estimated.pop", "estimated.pop", "estimated.pop", "estimated.pop",
"estimated.pop", "estimated.pop", "estimated.pop", "estimated.pop",
"estimated.pop", "estimated.pop", "predicted.pop", "predicted.pop",
"predicted.pop", "predicted.pop", "predicted.pop", "predicted.pop",
"predicted.pop", "predicted.pop", "predicted.pop", "predicted.pop",
"predicted.pop", "predicted.pop", "predicted.pop", "predicted.pop",
"predicted.pop"), pop = c(30806083, 46209124.25, 61612165.5,
77015206.75, 92418248, 105455596, 184545293, 263634990, 342724687,
421814384, 24760494, 37140741, 49520988, 61901235, 74281482,
92418248, 115522810, 138627372, 161731934, 184836496, 421814384,
527267980, 632721576, 738175172, 843628768, 74281482, 92851852.5,
111422223, 129992593.5, 148562964)), row.names = c(NA, -30L), class = "data.frame")

> str(temp)
'data.frame': 30 obs. of 5 variables:
$ continent : chr "Africa" "Africa" "Africa" "Africa" ...
$ year : num 1995 2000 2005 2010 2015 ...
$ urban.pop : num 30806083 46209124 61612166 77015207 92418248 ...
$ predicted.estimated.pop: chr "estimated.pop" "estimated.pop" "estimated.pop" "estimated.pop" ...
$ pop : num 30806083 46209124 61612166 77015207 92418248 ...






share|improve this answer












share|improve this answer



share|improve this answer










answered Nov 20 '18 at 20:31









jay.sfjay.sf

5,73831740




5,73831740













  • This works. Error was on my end. Get the data to look like this and everything will work.

    – MorrisseyJ
    Nov 21 '18 at 14:45











  • Cool. Thanks for your feedback.

    – jay.sf
    Nov 21 '18 at 15:18



















  • This works. Error was on my end. Get the data to look like this and everything will work.

    – MorrisseyJ
    Nov 21 '18 at 14:45











  • Cool. Thanks for your feedback.

    – jay.sf
    Nov 21 '18 at 15:18

















This works. Error was on my end. Get the data to look like this and everything will work.

– MorrisseyJ
Nov 21 '18 at 14:45





This works. Error was on my end. Get the data to look like this and everything will work.

– MorrisseyJ
Nov 21 '18 at 14:45













Cool. Thanks for your feedback.

– jay.sf
Nov 21 '18 at 15:18





Cool. Thanks for your feedback.

– jay.sf
Nov 21 '18 at 15:18




















draft saved

draft discarded




















































Thanks for contributing an answer to Stack Overflow!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53400464%2fggplot-not-adopting-aes-linetype%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Guess what letter conforming each word

Run scheduled task as local user group (not BUILTIN)

Port of Spain