Keras Model Weights for some layers become all “NaNs”












0















I am training a triplet model similar to -Keras model params are all "NaN"s after reloading; except that this model is built over the inception_v3 model.



(I am using Keras with Tensorflow backend)



But after just 2 epochs the model weights turn out to be NaN. And when I try to extract learnt features by passing an Input Image the features are all 0.



Model Architecture-



def triplet_loss(x, ALPHA=0.2):



anchor, positive, negative = x                                      

pos_dist = tf.reduce_sum(tf.square(tf.subtract(anchor, positive)), 1)
neg_dist = tf.reduce_sum(tf.square(tf.subtract(anchor, negative)), 1)

basic_loss = tf.add(tf.subtract(pos_dist, neg_dist), ALPHA)
loss = tf.reduce_mean(tf.maximum(basic_loss, 0.0), 0)

return loss


class StyleNet():



def __init__(self, input_shape_x, input_shape_y, input_shape_z, n_classes, reg_lambda):

self.input_shape_x = input_shape_x
self.input_shape_y = input_shape_y
self.input_shape_z = input_shape_z
self.n_classes = n_classes
self.reg_lambda = reg_lambda


def create_model(self):

anchor_example = Input(shape=(self.input_shape_x, self.input_shape_y, self.input_shape_z), name='input_1')
positive_example = Input(shape=(self.input_shape_x, self.input_shape_y, self.input_shape_z), name='input_2')
negative_example = Input(shape=(self.input_shape_x, self.input_shape_y, self.input_shape_z), name='input_3')

input_image = Input(shape=(self.input_shape_x, self.input_shape_y, self.input_shape_z))

base_inception = InceptionV3(input_tensor = input_image, input_shape=(self.input_shape_x, self.input_shape_y, self.input_shape_z), weights=None, include_top=False, pooling='avg')
base_pool5 = base_inception.output

##############Adding the Bottleneck layer Here#######################################################
bottleneck_layer = Dense(256, kernel_regularizer=l2(self.reg_lambda), name='bottleneck_layer')(base_pool5)
bottleneck_norm = BatchNormalization(name='bottleneck_norm')(bottleneck_layer)
bottleneck_relu = Activation('relu', name='bottleneck_relu')(bottleneck_norm)
bottleneck_drop = Dropout(0.5)(bottleneck_relu)

fin = Dense(self.n_classes)(bottleneck_drop)
fin_norm = BatchNormalization(name='fin_norm')(fin)
fin_softmax = Activation('softmax')(fin_norm)
######################################################################################################

###########Triplet Model Which learns the embedding layer relu6####################
self.triplet_model = Model(input_image, bottleneck_drop)
positive_embedding = self.triplet_model(positive_example)
negative_embedding = self.triplet_model(negative_example)
anchor_embedding = self.triplet_model(anchor_example)
###########Triplet Model Which learns the embedding layer relu6####################

adam_opt = optimizers.Adam(lr=0.00001, clipnorm = 1.0, amsgrad=False)

#The Triplet Model which optimizes over the triplet loss.
loss = Lambda(triplet_loss, output_shape=(1,))([anchor_embedding, positive_embedding, negative_embedding])
self.triplet_model_worker = Model(inputs=[anchor_example, positive_example, negative_example], outputs = loss)
self.triplet_model_worker.compile(loss='mean_absolute_error', optimizer=adam_opt)

def fit_model(self, pathname='./models/'):
if not os.path.exists(pathname):
os.makedirs(pathname)
if not os.path.exists(pathname+'/weights'):
os.makedirs(pathname+'/weights')
if not os.path.exists(pathname+'/tb'):
os.makedirs(pathname+'/tb')
filepath=pathname+"weights/{epoch:02d}.hdf5"
checkpoint = ModelCheckpoint(filepath, monitor='loss', verbose=1, save_best_only=False, mode='auto')
tensorboard = TensorBoard(log_dir=pathname+'/tb', write_graph=True, write_images=True)
callbacks_list = [checkpoint, tensorboard]

#Parameter
params = {'dim': (224, 224), 'batch_size':32, 'n_classes':11, 'n_channels':3, 'shuffle':True}

#Datasets
partition = pickle.load(open('../../../data/bam_2_partition_triplet.pkl', 'rb'))
labels = pickle.load(open('../../../data/bam_2_labels_triplet.pkl', 'rb'))

#Generators
training_generator = DataGenerator(partition['train'], labels, **params)
self.triplet_model_worker.fit_generator(generator = training_generator, epochs = 60, use_multiprocessing=True, workers = 10, callbacks = callbacks_list, verbose = 1)


What is troublesome is as answered in the link above. Even after using ***clipnorm=1.0**** the gradients explode and the weights give out "nan" values.



Saving and loading the model, then printing the weights. The NaNs are clearly visible.
Loading code:



m = load_model('/scratch/models_inception_stage2/yo/weights/02.hdf5', custom_objects={"tf":tf})

for layer in m.layers:
weights = layer.get_weights()
print (weights)


Snippet for the printed weights



Here
[array([ 3.4517611e-04, 1.3431008e-03, -1.1081886e-03, 2.6104850e-04,
-2.1620051e-04, 1.6816283e-03, 8.8927911e-05, -3.8964470e-04,
1.7968584e-03, 1.0259283e-03, 5.0400384e-04, -3.6578919e-04,
-1.1292399e-03, 1.1509922e-03, 3.2478449e-04, -3.6580343e-05,
-4.4458261e-04, 4.8210021e-04, -9.5213606e-04, -6.4406055e-04,
5.0959276e-04, -3.4098624e-04, -7.0486858e-05, 2.8134760e-04,
-8.0100907e-04, 8.2962180e-04, -6.4140803e-04, 9.4872032e-04,
-3.3409546e-05, -3.0277384e-04, 5.2237371e-04, -8.3427120e-04,
-2.5856070e-04, -1.0346439e-03, 4.3354488e-05, -8.8099617e-04,
-6.8233605e-04, -1.2386916e-04, 8.2019303e-04, -1.9070004e-03,
1.5571159e-03, -3.4599879e-04, 6.2088901e-04, -8.4720332e-06,
1.6024955e-04, -1.2059419e-03, -1.4946899e-04, -6.7080715e-04,
-2.8154058e-05, 5.1517348e-04, 5.9993083e-05, 2.8555689e-04,
3.9626448e-04, -5.1538437e-04, 1.9132573e-04, 1.1226863e-03,
1.1591403e-03, -6.3404470e-04, 2.8910063e-04, -7.9366821e-04,
-1.7228167e-04, 6.2899920e-04, 1.7438219e-04, 1.1385380e-04],
dtype=float32), array([nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan,
nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan,
nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan,
nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan,
nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan],
dtype=float32), array([0.50248814, 0.48732147, 0.64627343, 0.49432775, 0.45906776,
0.5168214 , 0.8561428 , 0.7308014 , 0.5067555 , 0.516555 ,
1.3287057 , 0.5746422 , 0.55597156, 1.0038179 , 0.9859771 ,
0.6110601 , 0.7357226 , 0.6123694 , 0.90676117, 0.5439505 ,
0.48629472, 0.5434108 , 0.4934845 , 0.5407317 , 0.6443982 ,
1.0403991 , 0.48624724, 0.83786434, 0.72478205, 0.7294607 ,
0.536994 , 0.38235992, 1.0484552 , 0.45833316, 0.48205158,
0.48236838, 0.71035874, 0.9472658 , 0.78085536, 1.0207686 ,
0.5089741 , 0.97984046, 0.86524594, 0.9828817 , 0.49027866,
0.7367909 , 0.57438385, 0.5011991 , 0.47189236, 0.52376693,
0.45648402, 0.40523565, 0.8375675 , 0.57908285, 0.6055632 ,
1.0325785 , 0.5377976 , 0.47033092, 0.83586556, 1.2780553 ,
0.503384 , 0.54509026, 0.5375585 , 0.6091993 ], dtype=float32)]


Would be grateful for any help.










share|improve this question























  • Have you tried increasing your learning rate?

    – kvish
    Nov 20 '18 at 20:37











  • No. I have not tried that. Although I am not sure, I may have tried with 0.0001. Can increasing learning rate solve this problem? I donot understand how it would ?

    – Sid Gairola
    Nov 20 '18 at 20:56








  • 1





    There seems to be some numerical instability somewhere. Your learning rate coupled with low gradient could drive that too if your rate is pretty low. Which is why I was wondering if you tried higher learning rates!

    – kvish
    Nov 20 '18 at 21:10











  • I tried with 0.001 Learning rate. Same result.

    – Sid Gairola
    Nov 21 '18 at 8:19






  • 1





    thanks for sharing that link. Looks like Keras team has added this as a bug! In that case, hopefully, they can shed some light on what is actually going on outside our speculations :)

    – kvish
    Dec 31 '18 at 13:46
















0















I am training a triplet model similar to -Keras model params are all "NaN"s after reloading; except that this model is built over the inception_v3 model.



(I am using Keras with Tensorflow backend)



But after just 2 epochs the model weights turn out to be NaN. And when I try to extract learnt features by passing an Input Image the features are all 0.



Model Architecture-



def triplet_loss(x, ALPHA=0.2):



anchor, positive, negative = x                                      

pos_dist = tf.reduce_sum(tf.square(tf.subtract(anchor, positive)), 1)
neg_dist = tf.reduce_sum(tf.square(tf.subtract(anchor, negative)), 1)

basic_loss = tf.add(tf.subtract(pos_dist, neg_dist), ALPHA)
loss = tf.reduce_mean(tf.maximum(basic_loss, 0.0), 0)

return loss


class StyleNet():



def __init__(self, input_shape_x, input_shape_y, input_shape_z, n_classes, reg_lambda):

self.input_shape_x = input_shape_x
self.input_shape_y = input_shape_y
self.input_shape_z = input_shape_z
self.n_classes = n_classes
self.reg_lambda = reg_lambda


def create_model(self):

anchor_example = Input(shape=(self.input_shape_x, self.input_shape_y, self.input_shape_z), name='input_1')
positive_example = Input(shape=(self.input_shape_x, self.input_shape_y, self.input_shape_z), name='input_2')
negative_example = Input(shape=(self.input_shape_x, self.input_shape_y, self.input_shape_z), name='input_3')

input_image = Input(shape=(self.input_shape_x, self.input_shape_y, self.input_shape_z))

base_inception = InceptionV3(input_tensor = input_image, input_shape=(self.input_shape_x, self.input_shape_y, self.input_shape_z), weights=None, include_top=False, pooling='avg')
base_pool5 = base_inception.output

##############Adding the Bottleneck layer Here#######################################################
bottleneck_layer = Dense(256, kernel_regularizer=l2(self.reg_lambda), name='bottleneck_layer')(base_pool5)
bottleneck_norm = BatchNormalization(name='bottleneck_norm')(bottleneck_layer)
bottleneck_relu = Activation('relu', name='bottleneck_relu')(bottleneck_norm)
bottleneck_drop = Dropout(0.5)(bottleneck_relu)

fin = Dense(self.n_classes)(bottleneck_drop)
fin_norm = BatchNormalization(name='fin_norm')(fin)
fin_softmax = Activation('softmax')(fin_norm)
######################################################################################################

###########Triplet Model Which learns the embedding layer relu6####################
self.triplet_model = Model(input_image, bottleneck_drop)
positive_embedding = self.triplet_model(positive_example)
negative_embedding = self.triplet_model(negative_example)
anchor_embedding = self.triplet_model(anchor_example)
###########Triplet Model Which learns the embedding layer relu6####################

adam_opt = optimizers.Adam(lr=0.00001, clipnorm = 1.0, amsgrad=False)

#The Triplet Model which optimizes over the triplet loss.
loss = Lambda(triplet_loss, output_shape=(1,))([anchor_embedding, positive_embedding, negative_embedding])
self.triplet_model_worker = Model(inputs=[anchor_example, positive_example, negative_example], outputs = loss)
self.triplet_model_worker.compile(loss='mean_absolute_error', optimizer=adam_opt)

def fit_model(self, pathname='./models/'):
if not os.path.exists(pathname):
os.makedirs(pathname)
if not os.path.exists(pathname+'/weights'):
os.makedirs(pathname+'/weights')
if not os.path.exists(pathname+'/tb'):
os.makedirs(pathname+'/tb')
filepath=pathname+"weights/{epoch:02d}.hdf5"
checkpoint = ModelCheckpoint(filepath, monitor='loss', verbose=1, save_best_only=False, mode='auto')
tensorboard = TensorBoard(log_dir=pathname+'/tb', write_graph=True, write_images=True)
callbacks_list = [checkpoint, tensorboard]

#Parameter
params = {'dim': (224, 224), 'batch_size':32, 'n_classes':11, 'n_channels':3, 'shuffle':True}

#Datasets
partition = pickle.load(open('../../../data/bam_2_partition_triplet.pkl', 'rb'))
labels = pickle.load(open('../../../data/bam_2_labels_triplet.pkl', 'rb'))

#Generators
training_generator = DataGenerator(partition['train'], labels, **params)
self.triplet_model_worker.fit_generator(generator = training_generator, epochs = 60, use_multiprocessing=True, workers = 10, callbacks = callbacks_list, verbose = 1)


What is troublesome is as answered in the link above. Even after using ***clipnorm=1.0**** the gradients explode and the weights give out "nan" values.



Saving and loading the model, then printing the weights. The NaNs are clearly visible.
Loading code:



m = load_model('/scratch/models_inception_stage2/yo/weights/02.hdf5', custom_objects={"tf":tf})

for layer in m.layers:
weights = layer.get_weights()
print (weights)


Snippet for the printed weights



Here
[array([ 3.4517611e-04, 1.3431008e-03, -1.1081886e-03, 2.6104850e-04,
-2.1620051e-04, 1.6816283e-03, 8.8927911e-05, -3.8964470e-04,
1.7968584e-03, 1.0259283e-03, 5.0400384e-04, -3.6578919e-04,
-1.1292399e-03, 1.1509922e-03, 3.2478449e-04, -3.6580343e-05,
-4.4458261e-04, 4.8210021e-04, -9.5213606e-04, -6.4406055e-04,
5.0959276e-04, -3.4098624e-04, -7.0486858e-05, 2.8134760e-04,
-8.0100907e-04, 8.2962180e-04, -6.4140803e-04, 9.4872032e-04,
-3.3409546e-05, -3.0277384e-04, 5.2237371e-04, -8.3427120e-04,
-2.5856070e-04, -1.0346439e-03, 4.3354488e-05, -8.8099617e-04,
-6.8233605e-04, -1.2386916e-04, 8.2019303e-04, -1.9070004e-03,
1.5571159e-03, -3.4599879e-04, 6.2088901e-04, -8.4720332e-06,
1.6024955e-04, -1.2059419e-03, -1.4946899e-04, -6.7080715e-04,
-2.8154058e-05, 5.1517348e-04, 5.9993083e-05, 2.8555689e-04,
3.9626448e-04, -5.1538437e-04, 1.9132573e-04, 1.1226863e-03,
1.1591403e-03, -6.3404470e-04, 2.8910063e-04, -7.9366821e-04,
-1.7228167e-04, 6.2899920e-04, 1.7438219e-04, 1.1385380e-04],
dtype=float32), array([nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan,
nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan,
nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan,
nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan,
nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan],
dtype=float32), array([0.50248814, 0.48732147, 0.64627343, 0.49432775, 0.45906776,
0.5168214 , 0.8561428 , 0.7308014 , 0.5067555 , 0.516555 ,
1.3287057 , 0.5746422 , 0.55597156, 1.0038179 , 0.9859771 ,
0.6110601 , 0.7357226 , 0.6123694 , 0.90676117, 0.5439505 ,
0.48629472, 0.5434108 , 0.4934845 , 0.5407317 , 0.6443982 ,
1.0403991 , 0.48624724, 0.83786434, 0.72478205, 0.7294607 ,
0.536994 , 0.38235992, 1.0484552 , 0.45833316, 0.48205158,
0.48236838, 0.71035874, 0.9472658 , 0.78085536, 1.0207686 ,
0.5089741 , 0.97984046, 0.86524594, 0.9828817 , 0.49027866,
0.7367909 , 0.57438385, 0.5011991 , 0.47189236, 0.52376693,
0.45648402, 0.40523565, 0.8375675 , 0.57908285, 0.6055632 ,
1.0325785 , 0.5377976 , 0.47033092, 0.83586556, 1.2780553 ,
0.503384 , 0.54509026, 0.5375585 , 0.6091993 ], dtype=float32)]


Would be grateful for any help.










share|improve this question























  • Have you tried increasing your learning rate?

    – kvish
    Nov 20 '18 at 20:37











  • No. I have not tried that. Although I am not sure, I may have tried with 0.0001. Can increasing learning rate solve this problem? I donot understand how it would ?

    – Sid Gairola
    Nov 20 '18 at 20:56








  • 1





    There seems to be some numerical instability somewhere. Your learning rate coupled with low gradient could drive that too if your rate is pretty low. Which is why I was wondering if you tried higher learning rates!

    – kvish
    Nov 20 '18 at 21:10











  • I tried with 0.001 Learning rate. Same result.

    – Sid Gairola
    Nov 21 '18 at 8:19






  • 1





    thanks for sharing that link. Looks like Keras team has added this as a bug! In that case, hopefully, they can shed some light on what is actually going on outside our speculations :)

    – kvish
    Dec 31 '18 at 13:46














0












0








0








I am training a triplet model similar to -Keras model params are all "NaN"s after reloading; except that this model is built over the inception_v3 model.



(I am using Keras with Tensorflow backend)



But after just 2 epochs the model weights turn out to be NaN. And when I try to extract learnt features by passing an Input Image the features are all 0.



Model Architecture-



def triplet_loss(x, ALPHA=0.2):



anchor, positive, negative = x                                      

pos_dist = tf.reduce_sum(tf.square(tf.subtract(anchor, positive)), 1)
neg_dist = tf.reduce_sum(tf.square(tf.subtract(anchor, negative)), 1)

basic_loss = tf.add(tf.subtract(pos_dist, neg_dist), ALPHA)
loss = tf.reduce_mean(tf.maximum(basic_loss, 0.0), 0)

return loss


class StyleNet():



def __init__(self, input_shape_x, input_shape_y, input_shape_z, n_classes, reg_lambda):

self.input_shape_x = input_shape_x
self.input_shape_y = input_shape_y
self.input_shape_z = input_shape_z
self.n_classes = n_classes
self.reg_lambda = reg_lambda


def create_model(self):

anchor_example = Input(shape=(self.input_shape_x, self.input_shape_y, self.input_shape_z), name='input_1')
positive_example = Input(shape=(self.input_shape_x, self.input_shape_y, self.input_shape_z), name='input_2')
negative_example = Input(shape=(self.input_shape_x, self.input_shape_y, self.input_shape_z), name='input_3')

input_image = Input(shape=(self.input_shape_x, self.input_shape_y, self.input_shape_z))

base_inception = InceptionV3(input_tensor = input_image, input_shape=(self.input_shape_x, self.input_shape_y, self.input_shape_z), weights=None, include_top=False, pooling='avg')
base_pool5 = base_inception.output

##############Adding the Bottleneck layer Here#######################################################
bottleneck_layer = Dense(256, kernel_regularizer=l2(self.reg_lambda), name='bottleneck_layer')(base_pool5)
bottleneck_norm = BatchNormalization(name='bottleneck_norm')(bottleneck_layer)
bottleneck_relu = Activation('relu', name='bottleneck_relu')(bottleneck_norm)
bottleneck_drop = Dropout(0.5)(bottleneck_relu)

fin = Dense(self.n_classes)(bottleneck_drop)
fin_norm = BatchNormalization(name='fin_norm')(fin)
fin_softmax = Activation('softmax')(fin_norm)
######################################################################################################

###########Triplet Model Which learns the embedding layer relu6####################
self.triplet_model = Model(input_image, bottleneck_drop)
positive_embedding = self.triplet_model(positive_example)
negative_embedding = self.triplet_model(negative_example)
anchor_embedding = self.triplet_model(anchor_example)
###########Triplet Model Which learns the embedding layer relu6####################

adam_opt = optimizers.Adam(lr=0.00001, clipnorm = 1.0, amsgrad=False)

#The Triplet Model which optimizes over the triplet loss.
loss = Lambda(triplet_loss, output_shape=(1,))([anchor_embedding, positive_embedding, negative_embedding])
self.triplet_model_worker = Model(inputs=[anchor_example, positive_example, negative_example], outputs = loss)
self.triplet_model_worker.compile(loss='mean_absolute_error', optimizer=adam_opt)

def fit_model(self, pathname='./models/'):
if not os.path.exists(pathname):
os.makedirs(pathname)
if not os.path.exists(pathname+'/weights'):
os.makedirs(pathname+'/weights')
if not os.path.exists(pathname+'/tb'):
os.makedirs(pathname+'/tb')
filepath=pathname+"weights/{epoch:02d}.hdf5"
checkpoint = ModelCheckpoint(filepath, monitor='loss', verbose=1, save_best_only=False, mode='auto')
tensorboard = TensorBoard(log_dir=pathname+'/tb', write_graph=True, write_images=True)
callbacks_list = [checkpoint, tensorboard]

#Parameter
params = {'dim': (224, 224), 'batch_size':32, 'n_classes':11, 'n_channels':3, 'shuffle':True}

#Datasets
partition = pickle.load(open('../../../data/bam_2_partition_triplet.pkl', 'rb'))
labels = pickle.load(open('../../../data/bam_2_labels_triplet.pkl', 'rb'))

#Generators
training_generator = DataGenerator(partition['train'], labels, **params)
self.triplet_model_worker.fit_generator(generator = training_generator, epochs = 60, use_multiprocessing=True, workers = 10, callbacks = callbacks_list, verbose = 1)


What is troublesome is as answered in the link above. Even after using ***clipnorm=1.0**** the gradients explode and the weights give out "nan" values.



Saving and loading the model, then printing the weights. The NaNs are clearly visible.
Loading code:



m = load_model('/scratch/models_inception_stage2/yo/weights/02.hdf5', custom_objects={"tf":tf})

for layer in m.layers:
weights = layer.get_weights()
print (weights)


Snippet for the printed weights



Here
[array([ 3.4517611e-04, 1.3431008e-03, -1.1081886e-03, 2.6104850e-04,
-2.1620051e-04, 1.6816283e-03, 8.8927911e-05, -3.8964470e-04,
1.7968584e-03, 1.0259283e-03, 5.0400384e-04, -3.6578919e-04,
-1.1292399e-03, 1.1509922e-03, 3.2478449e-04, -3.6580343e-05,
-4.4458261e-04, 4.8210021e-04, -9.5213606e-04, -6.4406055e-04,
5.0959276e-04, -3.4098624e-04, -7.0486858e-05, 2.8134760e-04,
-8.0100907e-04, 8.2962180e-04, -6.4140803e-04, 9.4872032e-04,
-3.3409546e-05, -3.0277384e-04, 5.2237371e-04, -8.3427120e-04,
-2.5856070e-04, -1.0346439e-03, 4.3354488e-05, -8.8099617e-04,
-6.8233605e-04, -1.2386916e-04, 8.2019303e-04, -1.9070004e-03,
1.5571159e-03, -3.4599879e-04, 6.2088901e-04, -8.4720332e-06,
1.6024955e-04, -1.2059419e-03, -1.4946899e-04, -6.7080715e-04,
-2.8154058e-05, 5.1517348e-04, 5.9993083e-05, 2.8555689e-04,
3.9626448e-04, -5.1538437e-04, 1.9132573e-04, 1.1226863e-03,
1.1591403e-03, -6.3404470e-04, 2.8910063e-04, -7.9366821e-04,
-1.7228167e-04, 6.2899920e-04, 1.7438219e-04, 1.1385380e-04],
dtype=float32), array([nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan,
nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan,
nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan,
nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan,
nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan],
dtype=float32), array([0.50248814, 0.48732147, 0.64627343, 0.49432775, 0.45906776,
0.5168214 , 0.8561428 , 0.7308014 , 0.5067555 , 0.516555 ,
1.3287057 , 0.5746422 , 0.55597156, 1.0038179 , 0.9859771 ,
0.6110601 , 0.7357226 , 0.6123694 , 0.90676117, 0.5439505 ,
0.48629472, 0.5434108 , 0.4934845 , 0.5407317 , 0.6443982 ,
1.0403991 , 0.48624724, 0.83786434, 0.72478205, 0.7294607 ,
0.536994 , 0.38235992, 1.0484552 , 0.45833316, 0.48205158,
0.48236838, 0.71035874, 0.9472658 , 0.78085536, 1.0207686 ,
0.5089741 , 0.97984046, 0.86524594, 0.9828817 , 0.49027866,
0.7367909 , 0.57438385, 0.5011991 , 0.47189236, 0.52376693,
0.45648402, 0.40523565, 0.8375675 , 0.57908285, 0.6055632 ,
1.0325785 , 0.5377976 , 0.47033092, 0.83586556, 1.2780553 ,
0.503384 , 0.54509026, 0.5375585 , 0.6091993 ], dtype=float32)]


Would be grateful for any help.










share|improve this question














I am training a triplet model similar to -Keras model params are all "NaN"s after reloading; except that this model is built over the inception_v3 model.



(I am using Keras with Tensorflow backend)



But after just 2 epochs the model weights turn out to be NaN. And when I try to extract learnt features by passing an Input Image the features are all 0.



Model Architecture-



def triplet_loss(x, ALPHA=0.2):



anchor, positive, negative = x                                      

pos_dist = tf.reduce_sum(tf.square(tf.subtract(anchor, positive)), 1)
neg_dist = tf.reduce_sum(tf.square(tf.subtract(anchor, negative)), 1)

basic_loss = tf.add(tf.subtract(pos_dist, neg_dist), ALPHA)
loss = tf.reduce_mean(tf.maximum(basic_loss, 0.0), 0)

return loss


class StyleNet():



def __init__(self, input_shape_x, input_shape_y, input_shape_z, n_classes, reg_lambda):

self.input_shape_x = input_shape_x
self.input_shape_y = input_shape_y
self.input_shape_z = input_shape_z
self.n_classes = n_classes
self.reg_lambda = reg_lambda


def create_model(self):

anchor_example = Input(shape=(self.input_shape_x, self.input_shape_y, self.input_shape_z), name='input_1')
positive_example = Input(shape=(self.input_shape_x, self.input_shape_y, self.input_shape_z), name='input_2')
negative_example = Input(shape=(self.input_shape_x, self.input_shape_y, self.input_shape_z), name='input_3')

input_image = Input(shape=(self.input_shape_x, self.input_shape_y, self.input_shape_z))

base_inception = InceptionV3(input_tensor = input_image, input_shape=(self.input_shape_x, self.input_shape_y, self.input_shape_z), weights=None, include_top=False, pooling='avg')
base_pool5 = base_inception.output

##############Adding the Bottleneck layer Here#######################################################
bottleneck_layer = Dense(256, kernel_regularizer=l2(self.reg_lambda), name='bottleneck_layer')(base_pool5)
bottleneck_norm = BatchNormalization(name='bottleneck_norm')(bottleneck_layer)
bottleneck_relu = Activation('relu', name='bottleneck_relu')(bottleneck_norm)
bottleneck_drop = Dropout(0.5)(bottleneck_relu)

fin = Dense(self.n_classes)(bottleneck_drop)
fin_norm = BatchNormalization(name='fin_norm')(fin)
fin_softmax = Activation('softmax')(fin_norm)
######################################################################################################

###########Triplet Model Which learns the embedding layer relu6####################
self.triplet_model = Model(input_image, bottleneck_drop)
positive_embedding = self.triplet_model(positive_example)
negative_embedding = self.triplet_model(negative_example)
anchor_embedding = self.triplet_model(anchor_example)
###########Triplet Model Which learns the embedding layer relu6####################

adam_opt = optimizers.Adam(lr=0.00001, clipnorm = 1.0, amsgrad=False)

#The Triplet Model which optimizes over the triplet loss.
loss = Lambda(triplet_loss, output_shape=(1,))([anchor_embedding, positive_embedding, negative_embedding])
self.triplet_model_worker = Model(inputs=[anchor_example, positive_example, negative_example], outputs = loss)
self.triplet_model_worker.compile(loss='mean_absolute_error', optimizer=adam_opt)

def fit_model(self, pathname='./models/'):
if not os.path.exists(pathname):
os.makedirs(pathname)
if not os.path.exists(pathname+'/weights'):
os.makedirs(pathname+'/weights')
if not os.path.exists(pathname+'/tb'):
os.makedirs(pathname+'/tb')
filepath=pathname+"weights/{epoch:02d}.hdf5"
checkpoint = ModelCheckpoint(filepath, monitor='loss', verbose=1, save_best_only=False, mode='auto')
tensorboard = TensorBoard(log_dir=pathname+'/tb', write_graph=True, write_images=True)
callbacks_list = [checkpoint, tensorboard]

#Parameter
params = {'dim': (224, 224), 'batch_size':32, 'n_classes':11, 'n_channels':3, 'shuffle':True}

#Datasets
partition = pickle.load(open('../../../data/bam_2_partition_triplet.pkl', 'rb'))
labels = pickle.load(open('../../../data/bam_2_labels_triplet.pkl', 'rb'))

#Generators
training_generator = DataGenerator(partition['train'], labels, **params)
self.triplet_model_worker.fit_generator(generator = training_generator, epochs = 60, use_multiprocessing=True, workers = 10, callbacks = callbacks_list, verbose = 1)


What is troublesome is as answered in the link above. Even after using ***clipnorm=1.0**** the gradients explode and the weights give out "nan" values.



Saving and loading the model, then printing the weights. The NaNs are clearly visible.
Loading code:



m = load_model('/scratch/models_inception_stage2/yo/weights/02.hdf5', custom_objects={"tf":tf})

for layer in m.layers:
weights = layer.get_weights()
print (weights)


Snippet for the printed weights



Here
[array([ 3.4517611e-04, 1.3431008e-03, -1.1081886e-03, 2.6104850e-04,
-2.1620051e-04, 1.6816283e-03, 8.8927911e-05, -3.8964470e-04,
1.7968584e-03, 1.0259283e-03, 5.0400384e-04, -3.6578919e-04,
-1.1292399e-03, 1.1509922e-03, 3.2478449e-04, -3.6580343e-05,
-4.4458261e-04, 4.8210021e-04, -9.5213606e-04, -6.4406055e-04,
5.0959276e-04, -3.4098624e-04, -7.0486858e-05, 2.8134760e-04,
-8.0100907e-04, 8.2962180e-04, -6.4140803e-04, 9.4872032e-04,
-3.3409546e-05, -3.0277384e-04, 5.2237371e-04, -8.3427120e-04,
-2.5856070e-04, -1.0346439e-03, 4.3354488e-05, -8.8099617e-04,
-6.8233605e-04, -1.2386916e-04, 8.2019303e-04, -1.9070004e-03,
1.5571159e-03, -3.4599879e-04, 6.2088901e-04, -8.4720332e-06,
1.6024955e-04, -1.2059419e-03, -1.4946899e-04, -6.7080715e-04,
-2.8154058e-05, 5.1517348e-04, 5.9993083e-05, 2.8555689e-04,
3.9626448e-04, -5.1538437e-04, 1.9132573e-04, 1.1226863e-03,
1.1591403e-03, -6.3404470e-04, 2.8910063e-04, -7.9366821e-04,
-1.7228167e-04, 6.2899920e-04, 1.7438219e-04, 1.1385380e-04],
dtype=float32), array([nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan,
nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan,
nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan,
nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan,
nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan],
dtype=float32), array([0.50248814, 0.48732147, 0.64627343, 0.49432775, 0.45906776,
0.5168214 , 0.8561428 , 0.7308014 , 0.5067555 , 0.516555 ,
1.3287057 , 0.5746422 , 0.55597156, 1.0038179 , 0.9859771 ,
0.6110601 , 0.7357226 , 0.6123694 , 0.90676117, 0.5439505 ,
0.48629472, 0.5434108 , 0.4934845 , 0.5407317 , 0.6443982 ,
1.0403991 , 0.48624724, 0.83786434, 0.72478205, 0.7294607 ,
0.536994 , 0.38235992, 1.0484552 , 0.45833316, 0.48205158,
0.48236838, 0.71035874, 0.9472658 , 0.78085536, 1.0207686 ,
0.5089741 , 0.97984046, 0.86524594, 0.9828817 , 0.49027866,
0.7367909 , 0.57438385, 0.5011991 , 0.47189236, 0.52376693,
0.45648402, 0.40523565, 0.8375675 , 0.57908285, 0.6055632 ,
1.0325785 , 0.5377976 , 0.47033092, 0.83586556, 1.2780553 ,
0.503384 , 0.54509026, 0.5375585 , 0.6091993 ], dtype=float32)]


Would be grateful for any help.







python tensorflow keras






share|improve this question













share|improve this question











share|improve this question




share|improve this question










asked Nov 20 '18 at 19:46









Sid GairolaSid Gairola

162




162













  • Have you tried increasing your learning rate?

    – kvish
    Nov 20 '18 at 20:37











  • No. I have not tried that. Although I am not sure, I may have tried with 0.0001. Can increasing learning rate solve this problem? I donot understand how it would ?

    – Sid Gairola
    Nov 20 '18 at 20:56








  • 1





    There seems to be some numerical instability somewhere. Your learning rate coupled with low gradient could drive that too if your rate is pretty low. Which is why I was wondering if you tried higher learning rates!

    – kvish
    Nov 20 '18 at 21:10











  • I tried with 0.001 Learning rate. Same result.

    – Sid Gairola
    Nov 21 '18 at 8:19






  • 1





    thanks for sharing that link. Looks like Keras team has added this as a bug! In that case, hopefully, they can shed some light on what is actually going on outside our speculations :)

    – kvish
    Dec 31 '18 at 13:46



















  • Have you tried increasing your learning rate?

    – kvish
    Nov 20 '18 at 20:37











  • No. I have not tried that. Although I am not sure, I may have tried with 0.0001. Can increasing learning rate solve this problem? I donot understand how it would ?

    – Sid Gairola
    Nov 20 '18 at 20:56








  • 1





    There seems to be some numerical instability somewhere. Your learning rate coupled with low gradient could drive that too if your rate is pretty low. Which is why I was wondering if you tried higher learning rates!

    – kvish
    Nov 20 '18 at 21:10











  • I tried with 0.001 Learning rate. Same result.

    – Sid Gairola
    Nov 21 '18 at 8:19






  • 1





    thanks for sharing that link. Looks like Keras team has added this as a bug! In that case, hopefully, they can shed some light on what is actually going on outside our speculations :)

    – kvish
    Dec 31 '18 at 13:46

















Have you tried increasing your learning rate?

– kvish
Nov 20 '18 at 20:37





Have you tried increasing your learning rate?

– kvish
Nov 20 '18 at 20:37













No. I have not tried that. Although I am not sure, I may have tried with 0.0001. Can increasing learning rate solve this problem? I donot understand how it would ?

– Sid Gairola
Nov 20 '18 at 20:56







No. I have not tried that. Although I am not sure, I may have tried with 0.0001. Can increasing learning rate solve this problem? I donot understand how it would ?

– Sid Gairola
Nov 20 '18 at 20:56






1




1





There seems to be some numerical instability somewhere. Your learning rate coupled with low gradient could drive that too if your rate is pretty low. Which is why I was wondering if you tried higher learning rates!

– kvish
Nov 20 '18 at 21:10





There seems to be some numerical instability somewhere. Your learning rate coupled with low gradient could drive that too if your rate is pretty low. Which is why I was wondering if you tried higher learning rates!

– kvish
Nov 20 '18 at 21:10













I tried with 0.001 Learning rate. Same result.

– Sid Gairola
Nov 21 '18 at 8:19





I tried with 0.001 Learning rate. Same result.

– Sid Gairola
Nov 21 '18 at 8:19




1




1





thanks for sharing that link. Looks like Keras team has added this as a bug! In that case, hopefully, they can shed some light on what is actually going on outside our speculations :)

– kvish
Dec 31 '18 at 13:46





thanks for sharing that link. Looks like Keras team has added this as a bug! In that case, hopefully, they can shed some light on what is actually going on outside our speculations :)

– kvish
Dec 31 '18 at 13:46












0






active

oldest

votes











Your Answer






StackExchange.ifUsing("editor", function () {
StackExchange.using("externalEditor", function () {
StackExchange.using("snippets", function () {
StackExchange.snippets.init();
});
});
}, "code-snippets");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "1"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53400472%2fkeras-model-weights-for-some-layers-become-all-nans%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























0






active

oldest

votes








0






active

oldest

votes









active

oldest

votes






active

oldest

votes
















draft saved

draft discarded




















































Thanks for contributing an answer to Stack Overflow!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53400472%2fkeras-model-weights-for-some-layers-become-all-nans%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Guess what letter conforming each word

Run scheduled task as local user group (not BUILTIN)

Port of Spain