How can I integrate a machine learning algorithm in py file into django website?
.everyoneloves__top-leaderboard:empty,.everyoneloves__mid-leaderboard:empty,.everyoneloves__bot-mid-leaderboard:empty{ height:90px;width:728px;box-sizing:border-box;
}
I'm working with random forest algorithm to predict college dropouts with python, the algorithm is finished and now I have to use that file and be able to run it from a website, I'm using django but I don't know how I can make it work, I import the file in views but it only display a line, it doesn't even have an structure like it has when I run the file in jupyter, so if anyone knows something I'll be very thankful.
Sorry if is a little difficult to understand, english is not my first language.
This is the algorithm
import numpy as np
from sklearn.ensemble import RandomForestClassifier
from sklearn import metrics
import pandas as pd
from sklearn.feature_selection import SelectKBest
dataset = pd.read_csv('C:/Users/danni/OneDrive/Documents/Universidad/2018/Tesis/encuestas/Nueva carpeta/Nueva carpeta/SinRanking/2005_2017_SOLO_PRIMERO_Y_SEGUNDO.csv', delimiter=";")
datos2 = dataset['F_Nac']
i = 0
a =
while i < len(datos2):
value2 = datos2[i]
first = value2[6:10]
year = first
a_ingreso = dataset['A_Ingreso']
a.append(a_ingreso[i] - int(year))
i += 1
dataset['edad_ingreso']=a;
#calculamos la edad de ingreso a la universidad
def calcula_dif_years_eg_in(anio,cuando):
return anio - cuando
dataset['a_egresado_colegio']=dataset.apply(lambda x: calcula_dif_years_eg_in(x['A_Ingreso'],x['A_Egreso_Colegio']), axis=1);
dataset = dataset.drop(["F_Nac","A_Ingreso","A_Egreso_Colegio","Via_Ingreso"], axis=1)
# cargamos las variables predictoras
predictors = dataset.drop(['Deserto'], axis=1)
# y estos son los resultados que se obtienen, en el mismo orden
targets = dataset['Deserto']
best=SelectKBest(k=10)
X_new = best.fit_transform(predictors, targets)
X_new.shape
selected = best.get_support(indices=True)
print(predictors.columns[selected])
#datos desde el 2005 al 2015
X_train = predictors[0:567]
X_test = predictors[568:632]
#datos del 2016
y_train = targets[0:567]
y_test = targets[568:632]
modelo = RandomForestClassifier(
random_state = 1, # semilla inicial de aleatoriedad del algoritmo
n_estimators = 5, # cantidad de arboles a crear
min_samples_split = 0.5, # cantidad minima de observaciones para dividir un nodo
min_samples_leaf = 8, # observaciones minimas que puede tener una hoja del arbol
n_jobs = -1 # tareas en paralelo. para todos los cores disponibles usar -1
)
modelo.fit(X_train[predictors.columns[selected]].values, y_train)
prediccion = modelo.predict(X_test[predictors.columns[selected]].values)
modelo.score(X_train[predictors.columns[selected]], y_train)
modelo.score(X_test[predictors.columns[selected]], y_test)
print(metrics.classification_report(y_true=y_test, y_pred=prediccion))
print(pd.crosstab(y_test, prediccion, rownames=['REAL'], colnames=['PREDICCION']))
var_imp = pd.DataFrame({
'feature':predictors.columns[selected],
'v_importance':modelo.feature_importances_.tolist()
})
print (var_imp.sort_values(by = 'v_importance', ascending=False))
#Curvas de aprendizaje
from sklearn.learning_curve import learning_curve
train_sizes, train_scores, test_scores = learning_curve(estimator=modelo,
X=X_train, y=y_train,
train_sizes=np.linspace(0.1, 1.0, 10), cv=10,
n_jobs=-1)
train_mean = np.mean(train_scores, axis=1)
train_std = np.std(train_scores, axis=1)
test_mean = np.mean(test_scores, axis=1)
test_std = np.std(test_scores, axis=1)
import matplotlib.pyplot as plt
import seaborn as sns
get_ipython().run_line_magic('matplotlib', 'inline')
sns.set_palette("deep",desat=.6)
sns.set_context(rc={"figure.figsize":(8,4)})
# graficando las curvas
plt.plot(train_sizes, train_mean, color='r', marker='o', markersize=5,
label='entrenamiento')
plt.fill_between(train_sizes, train_mean + train_std,
train_mean - train_std, alpha=0.15, color='r')
plt.plot(train_sizes, test_mean, color='b', linestyle='--',
marker='s', markersize=5, label='evaluacion')
plt.fill_between(train_sizes, test_mean + test_std,
test_mean - test_std, alpha=0.15, color='b')
plt.grid()
plt.title('Curva de aprendizaje')
plt.legend(loc='upper right')
plt.xlabel('Cant de ejemplos de entrenamiento')
plt.ylabel('Precision')
plt.show()
i = 0
a =
while i < len(X_test):
a.append(modelo.predict(X_test[predictors.columns[selected]])[i])
i += 1
print(a)
X_test['x']=a
X_test
print(X_test.groupby('x').size())
python html django csv machine-learning
add a comment |
I'm working with random forest algorithm to predict college dropouts with python, the algorithm is finished and now I have to use that file and be able to run it from a website, I'm using django but I don't know how I can make it work, I import the file in views but it only display a line, it doesn't even have an structure like it has when I run the file in jupyter, so if anyone knows something I'll be very thankful.
Sorry if is a little difficult to understand, english is not my first language.
This is the algorithm
import numpy as np
from sklearn.ensemble import RandomForestClassifier
from sklearn import metrics
import pandas as pd
from sklearn.feature_selection import SelectKBest
dataset = pd.read_csv('C:/Users/danni/OneDrive/Documents/Universidad/2018/Tesis/encuestas/Nueva carpeta/Nueva carpeta/SinRanking/2005_2017_SOLO_PRIMERO_Y_SEGUNDO.csv', delimiter=";")
datos2 = dataset['F_Nac']
i = 0
a =
while i < len(datos2):
value2 = datos2[i]
first = value2[6:10]
year = first
a_ingreso = dataset['A_Ingreso']
a.append(a_ingreso[i] - int(year))
i += 1
dataset['edad_ingreso']=a;
#calculamos la edad de ingreso a la universidad
def calcula_dif_years_eg_in(anio,cuando):
return anio - cuando
dataset['a_egresado_colegio']=dataset.apply(lambda x: calcula_dif_years_eg_in(x['A_Ingreso'],x['A_Egreso_Colegio']), axis=1);
dataset = dataset.drop(["F_Nac","A_Ingreso","A_Egreso_Colegio","Via_Ingreso"], axis=1)
# cargamos las variables predictoras
predictors = dataset.drop(['Deserto'], axis=1)
# y estos son los resultados que se obtienen, en el mismo orden
targets = dataset['Deserto']
best=SelectKBest(k=10)
X_new = best.fit_transform(predictors, targets)
X_new.shape
selected = best.get_support(indices=True)
print(predictors.columns[selected])
#datos desde el 2005 al 2015
X_train = predictors[0:567]
X_test = predictors[568:632]
#datos del 2016
y_train = targets[0:567]
y_test = targets[568:632]
modelo = RandomForestClassifier(
random_state = 1, # semilla inicial de aleatoriedad del algoritmo
n_estimators = 5, # cantidad de arboles a crear
min_samples_split = 0.5, # cantidad minima de observaciones para dividir un nodo
min_samples_leaf = 8, # observaciones minimas que puede tener una hoja del arbol
n_jobs = -1 # tareas en paralelo. para todos los cores disponibles usar -1
)
modelo.fit(X_train[predictors.columns[selected]].values, y_train)
prediccion = modelo.predict(X_test[predictors.columns[selected]].values)
modelo.score(X_train[predictors.columns[selected]], y_train)
modelo.score(X_test[predictors.columns[selected]], y_test)
print(metrics.classification_report(y_true=y_test, y_pred=prediccion))
print(pd.crosstab(y_test, prediccion, rownames=['REAL'], colnames=['PREDICCION']))
var_imp = pd.DataFrame({
'feature':predictors.columns[selected],
'v_importance':modelo.feature_importances_.tolist()
})
print (var_imp.sort_values(by = 'v_importance', ascending=False))
#Curvas de aprendizaje
from sklearn.learning_curve import learning_curve
train_sizes, train_scores, test_scores = learning_curve(estimator=modelo,
X=X_train, y=y_train,
train_sizes=np.linspace(0.1, 1.0, 10), cv=10,
n_jobs=-1)
train_mean = np.mean(train_scores, axis=1)
train_std = np.std(train_scores, axis=1)
test_mean = np.mean(test_scores, axis=1)
test_std = np.std(test_scores, axis=1)
import matplotlib.pyplot as plt
import seaborn as sns
get_ipython().run_line_magic('matplotlib', 'inline')
sns.set_palette("deep",desat=.6)
sns.set_context(rc={"figure.figsize":(8,4)})
# graficando las curvas
plt.plot(train_sizes, train_mean, color='r', marker='o', markersize=5,
label='entrenamiento')
plt.fill_between(train_sizes, train_mean + train_std,
train_mean - train_std, alpha=0.15, color='r')
plt.plot(train_sizes, test_mean, color='b', linestyle='--',
marker='s', markersize=5, label='evaluacion')
plt.fill_between(train_sizes, test_mean + test_std,
test_mean - test_std, alpha=0.15, color='b')
plt.grid()
plt.title('Curva de aprendizaje')
plt.legend(loc='upper right')
plt.xlabel('Cant de ejemplos de entrenamiento')
plt.ylabel('Precision')
plt.show()
i = 0
a =
while i < len(X_test):
a.append(modelo.predict(X_test[predictors.columns[selected]])[i])
i += 1
print(a)
X_test['x']=a
X_test
print(X_test.groupby('x').size())
python html django csv machine-learning
add a comment |
I'm working with random forest algorithm to predict college dropouts with python, the algorithm is finished and now I have to use that file and be able to run it from a website, I'm using django but I don't know how I can make it work, I import the file in views but it only display a line, it doesn't even have an structure like it has when I run the file in jupyter, so if anyone knows something I'll be very thankful.
Sorry if is a little difficult to understand, english is not my first language.
This is the algorithm
import numpy as np
from sklearn.ensemble import RandomForestClassifier
from sklearn import metrics
import pandas as pd
from sklearn.feature_selection import SelectKBest
dataset = pd.read_csv('C:/Users/danni/OneDrive/Documents/Universidad/2018/Tesis/encuestas/Nueva carpeta/Nueva carpeta/SinRanking/2005_2017_SOLO_PRIMERO_Y_SEGUNDO.csv', delimiter=";")
datos2 = dataset['F_Nac']
i = 0
a =
while i < len(datos2):
value2 = datos2[i]
first = value2[6:10]
year = first
a_ingreso = dataset['A_Ingreso']
a.append(a_ingreso[i] - int(year))
i += 1
dataset['edad_ingreso']=a;
#calculamos la edad de ingreso a la universidad
def calcula_dif_years_eg_in(anio,cuando):
return anio - cuando
dataset['a_egresado_colegio']=dataset.apply(lambda x: calcula_dif_years_eg_in(x['A_Ingreso'],x['A_Egreso_Colegio']), axis=1);
dataset = dataset.drop(["F_Nac","A_Ingreso","A_Egreso_Colegio","Via_Ingreso"], axis=1)
# cargamos las variables predictoras
predictors = dataset.drop(['Deserto'], axis=1)
# y estos son los resultados que se obtienen, en el mismo orden
targets = dataset['Deserto']
best=SelectKBest(k=10)
X_new = best.fit_transform(predictors, targets)
X_new.shape
selected = best.get_support(indices=True)
print(predictors.columns[selected])
#datos desde el 2005 al 2015
X_train = predictors[0:567]
X_test = predictors[568:632]
#datos del 2016
y_train = targets[0:567]
y_test = targets[568:632]
modelo = RandomForestClassifier(
random_state = 1, # semilla inicial de aleatoriedad del algoritmo
n_estimators = 5, # cantidad de arboles a crear
min_samples_split = 0.5, # cantidad minima de observaciones para dividir un nodo
min_samples_leaf = 8, # observaciones minimas que puede tener una hoja del arbol
n_jobs = -1 # tareas en paralelo. para todos los cores disponibles usar -1
)
modelo.fit(X_train[predictors.columns[selected]].values, y_train)
prediccion = modelo.predict(X_test[predictors.columns[selected]].values)
modelo.score(X_train[predictors.columns[selected]], y_train)
modelo.score(X_test[predictors.columns[selected]], y_test)
print(metrics.classification_report(y_true=y_test, y_pred=prediccion))
print(pd.crosstab(y_test, prediccion, rownames=['REAL'], colnames=['PREDICCION']))
var_imp = pd.DataFrame({
'feature':predictors.columns[selected],
'v_importance':modelo.feature_importances_.tolist()
})
print (var_imp.sort_values(by = 'v_importance', ascending=False))
#Curvas de aprendizaje
from sklearn.learning_curve import learning_curve
train_sizes, train_scores, test_scores = learning_curve(estimator=modelo,
X=X_train, y=y_train,
train_sizes=np.linspace(0.1, 1.0, 10), cv=10,
n_jobs=-1)
train_mean = np.mean(train_scores, axis=1)
train_std = np.std(train_scores, axis=1)
test_mean = np.mean(test_scores, axis=1)
test_std = np.std(test_scores, axis=1)
import matplotlib.pyplot as plt
import seaborn as sns
get_ipython().run_line_magic('matplotlib', 'inline')
sns.set_palette("deep",desat=.6)
sns.set_context(rc={"figure.figsize":(8,4)})
# graficando las curvas
plt.plot(train_sizes, train_mean, color='r', marker='o', markersize=5,
label='entrenamiento')
plt.fill_between(train_sizes, train_mean + train_std,
train_mean - train_std, alpha=0.15, color='r')
plt.plot(train_sizes, test_mean, color='b', linestyle='--',
marker='s', markersize=5, label='evaluacion')
plt.fill_between(train_sizes, test_mean + test_std,
test_mean - test_std, alpha=0.15, color='b')
plt.grid()
plt.title('Curva de aprendizaje')
plt.legend(loc='upper right')
plt.xlabel('Cant de ejemplos de entrenamiento')
plt.ylabel('Precision')
plt.show()
i = 0
a =
while i < len(X_test):
a.append(modelo.predict(X_test[predictors.columns[selected]])[i])
i += 1
print(a)
X_test['x']=a
X_test
print(X_test.groupby('x').size())
python html django csv machine-learning
I'm working with random forest algorithm to predict college dropouts with python, the algorithm is finished and now I have to use that file and be able to run it from a website, I'm using django but I don't know how I can make it work, I import the file in views but it only display a line, it doesn't even have an structure like it has when I run the file in jupyter, so if anyone knows something I'll be very thankful.
Sorry if is a little difficult to understand, english is not my first language.
This is the algorithm
import numpy as np
from sklearn.ensemble import RandomForestClassifier
from sklearn import metrics
import pandas as pd
from sklearn.feature_selection import SelectKBest
dataset = pd.read_csv('C:/Users/danni/OneDrive/Documents/Universidad/2018/Tesis/encuestas/Nueva carpeta/Nueva carpeta/SinRanking/2005_2017_SOLO_PRIMERO_Y_SEGUNDO.csv', delimiter=";")
datos2 = dataset['F_Nac']
i = 0
a =
while i < len(datos2):
value2 = datos2[i]
first = value2[6:10]
year = first
a_ingreso = dataset['A_Ingreso']
a.append(a_ingreso[i] - int(year))
i += 1
dataset['edad_ingreso']=a;
#calculamos la edad de ingreso a la universidad
def calcula_dif_years_eg_in(anio,cuando):
return anio - cuando
dataset['a_egresado_colegio']=dataset.apply(lambda x: calcula_dif_years_eg_in(x['A_Ingreso'],x['A_Egreso_Colegio']), axis=1);
dataset = dataset.drop(["F_Nac","A_Ingreso","A_Egreso_Colegio","Via_Ingreso"], axis=1)
# cargamos las variables predictoras
predictors = dataset.drop(['Deserto'], axis=1)
# y estos son los resultados que se obtienen, en el mismo orden
targets = dataset['Deserto']
best=SelectKBest(k=10)
X_new = best.fit_transform(predictors, targets)
X_new.shape
selected = best.get_support(indices=True)
print(predictors.columns[selected])
#datos desde el 2005 al 2015
X_train = predictors[0:567]
X_test = predictors[568:632]
#datos del 2016
y_train = targets[0:567]
y_test = targets[568:632]
modelo = RandomForestClassifier(
random_state = 1, # semilla inicial de aleatoriedad del algoritmo
n_estimators = 5, # cantidad de arboles a crear
min_samples_split = 0.5, # cantidad minima de observaciones para dividir un nodo
min_samples_leaf = 8, # observaciones minimas que puede tener una hoja del arbol
n_jobs = -1 # tareas en paralelo. para todos los cores disponibles usar -1
)
modelo.fit(X_train[predictors.columns[selected]].values, y_train)
prediccion = modelo.predict(X_test[predictors.columns[selected]].values)
modelo.score(X_train[predictors.columns[selected]], y_train)
modelo.score(X_test[predictors.columns[selected]], y_test)
print(metrics.classification_report(y_true=y_test, y_pred=prediccion))
print(pd.crosstab(y_test, prediccion, rownames=['REAL'], colnames=['PREDICCION']))
var_imp = pd.DataFrame({
'feature':predictors.columns[selected],
'v_importance':modelo.feature_importances_.tolist()
})
print (var_imp.sort_values(by = 'v_importance', ascending=False))
#Curvas de aprendizaje
from sklearn.learning_curve import learning_curve
train_sizes, train_scores, test_scores = learning_curve(estimator=modelo,
X=X_train, y=y_train,
train_sizes=np.linspace(0.1, 1.0, 10), cv=10,
n_jobs=-1)
train_mean = np.mean(train_scores, axis=1)
train_std = np.std(train_scores, axis=1)
test_mean = np.mean(test_scores, axis=1)
test_std = np.std(test_scores, axis=1)
import matplotlib.pyplot as plt
import seaborn as sns
get_ipython().run_line_magic('matplotlib', 'inline')
sns.set_palette("deep",desat=.6)
sns.set_context(rc={"figure.figsize":(8,4)})
# graficando las curvas
plt.plot(train_sizes, train_mean, color='r', marker='o', markersize=5,
label='entrenamiento')
plt.fill_between(train_sizes, train_mean + train_std,
train_mean - train_std, alpha=0.15, color='r')
plt.plot(train_sizes, test_mean, color='b', linestyle='--',
marker='s', markersize=5, label='evaluacion')
plt.fill_between(train_sizes, test_mean + test_std,
test_mean - test_std, alpha=0.15, color='b')
plt.grid()
plt.title('Curva de aprendizaje')
plt.legend(loc='upper right')
plt.xlabel('Cant de ejemplos de entrenamiento')
plt.ylabel('Precision')
plt.show()
i = 0
a =
while i < len(X_test):
a.append(modelo.predict(X_test[predictors.columns[selected]])[i])
i += 1
print(a)
X_test['x']=a
X_test
print(X_test.groupby('x').size())
python html django csv machine-learning
python html django csv machine-learning
asked Nov 22 '18 at 4:28
CrusshyCrusshy
11
11
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
There are a couple of options.
- Run it as a separate service, so that more than one application(s) can use it independently. For this you'll need to create an API around your machine learning implementation (which should expose required functionalities like training a model, predicting etc) and deploy/host it separately. This separates concerns for your web application and the actual machine learning so this is my preferred way unless the whole application is small (like a proof of concept).
- Keep all the code together including your machine learning part of it and deploy it as a single monolithic application. You'll need some persistent binary (eg. file) storage to store trained models (eg Google cloud storage), from where more than one applications (with their own ML programs, which may differ, maintaining compatibility with your trained model though, if they want to share it). If all you care about is getting something in a working condition first (such as a proof of concept), this should be simpler and faster.
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
StackExchange.using("externalEditor", function () {
StackExchange.using("snippets", function () {
StackExchange.snippets.init();
});
});
}, "code-snippets");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "1"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53423905%2fhow-can-i-integrate-a-machine-learning-algorithm-in-py-file-into-django-website%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
There are a couple of options.
- Run it as a separate service, so that more than one application(s) can use it independently. For this you'll need to create an API around your machine learning implementation (which should expose required functionalities like training a model, predicting etc) and deploy/host it separately. This separates concerns for your web application and the actual machine learning so this is my preferred way unless the whole application is small (like a proof of concept).
- Keep all the code together including your machine learning part of it and deploy it as a single monolithic application. You'll need some persistent binary (eg. file) storage to store trained models (eg Google cloud storage), from where more than one applications (with their own ML programs, which may differ, maintaining compatibility with your trained model though, if they want to share it). If all you care about is getting something in a working condition first (such as a proof of concept), this should be simpler and faster.
add a comment |
There are a couple of options.
- Run it as a separate service, so that more than one application(s) can use it independently. For this you'll need to create an API around your machine learning implementation (which should expose required functionalities like training a model, predicting etc) and deploy/host it separately. This separates concerns for your web application and the actual machine learning so this is my preferred way unless the whole application is small (like a proof of concept).
- Keep all the code together including your machine learning part of it and deploy it as a single monolithic application. You'll need some persistent binary (eg. file) storage to store trained models (eg Google cloud storage), from where more than one applications (with their own ML programs, which may differ, maintaining compatibility with your trained model though, if they want to share it). If all you care about is getting something in a working condition first (such as a proof of concept), this should be simpler and faster.
add a comment |
There are a couple of options.
- Run it as a separate service, so that more than one application(s) can use it independently. For this you'll need to create an API around your machine learning implementation (which should expose required functionalities like training a model, predicting etc) and deploy/host it separately. This separates concerns for your web application and the actual machine learning so this is my preferred way unless the whole application is small (like a proof of concept).
- Keep all the code together including your machine learning part of it and deploy it as a single monolithic application. You'll need some persistent binary (eg. file) storage to store trained models (eg Google cloud storage), from where more than one applications (with their own ML programs, which may differ, maintaining compatibility with your trained model though, if they want to share it). If all you care about is getting something in a working condition first (such as a proof of concept), this should be simpler and faster.
There are a couple of options.
- Run it as a separate service, so that more than one application(s) can use it independently. For this you'll need to create an API around your machine learning implementation (which should expose required functionalities like training a model, predicting etc) and deploy/host it separately. This separates concerns for your web application and the actual machine learning so this is my preferred way unless the whole application is small (like a proof of concept).
- Keep all the code together including your machine learning part of it and deploy it as a single monolithic application. You'll need some persistent binary (eg. file) storage to store trained models (eg Google cloud storage), from where more than one applications (with their own ML programs, which may differ, maintaining compatibility with your trained model though, if they want to share it). If all you care about is getting something in a working condition first (such as a proof of concept), this should be simpler and faster.
answered Dec 2 '18 at 5:33
0xc0de0xc0de
4,80023666
4,80023666
add a comment |
add a comment |
Thanks for contributing an answer to Stack Overflow!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53423905%2fhow-can-i-integrate-a-machine-learning-algorithm-in-py-file-into-django-website%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown