TENSORFLOW Cannot feed value of shape (10, 9) for Tensor 'Placeholder_2:0', which has shape '(?, 7)'
I am using Tensorflow to train my data for gesture recognition. Here is my Code:
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from scipy import stats
import tensorflow as tf
%matplotlib inline
plt.style.use('ggplot')
def read_data(file_path):
column_names = ['user-id','activity','timestamp','x-axis','y-axis','z-axis']
data = pd.read_csv(file_path,header = None, names = column_names, comment=';')
return data
def feature_normalize(dataset):
mu = np.mean(dataset,axis = 0)
sigma = np.std(dataset,axis = 0)
return (dataset - mu)/sigma
def plot_axis(ax, x, y, title):
ax.plot(x, y)
ax.set_title(title)
ax.xaxis.set_visible(False)
ax.set_ylim([min(y) - np.std(y), max(y) + np.std(y)])
ax.set_xlim([min(x), max(x)])
ax.grid(True)
def plot_activity(activity,data):
fig, (ax0, ax1, ax2) = plt.subplots(nrows = 3, figsize = (15, 10), sharex = True)
plot_axis(ax0, data['timestamp'], data['x-axis'], 'x-axis')
plot_axis(ax1, data['timestamp'], data['y-axis'], 'y-axis')
plot_axis(ax2, data['timestamp'], data['z-axis'], 'z-axis')
plt.subplots_adjust(hspace=0.2)
fig.suptitle(activity)
plt.subplots_adjust(top=0.90)
plt.show()
dataset = read_data('C:\Users\ASUS\Desktop\final_data.txt')
dataset['x-axis'] = feature_normalize(dataset['x-axis'])
dataset['y-axis'] = feature_normalize(dataset['y-axis'])
dataset['z-axis'] = feature_normalize(dataset['z-axis'])
for activity in np.unique(dataset["activity"]):
subset = dataset[dataset["activity"] == activity][:34]
plot_activity(activity,subset)
def windows(data, size):
start = 0
while start < data.count():
yield int(start), int(start + size)
start += (size / 2)
def segment_signal(data,window_size = 17):
segments = np.empty((0,window_size,3))
labels = np.empty((0))
for (start, end) in windows(data["timestamp"], window_size):
x = data["x-axis"][start:end]
y = data["y-axis"][start:end]
z = data["z-axis"][start:end]
if(len(dataset["timestamp"][start:end]) == window_size):
segments = np.vstack([segments,np.dstack([x,y,z])])
labels = np.append(labels,stats.mode(data["activity"][start:end])[0][0])
return segments, labels
segments, labels = segment_signal(dataset)
labels = np.asarray(pd.get_dummies(labels), dtype = np.int8)
reshaped_segments = segments.reshape(len(segments), 1,17, 3)
train_test_split = np.random.rand(len(reshaped_segments)) < 0.80
train_x = reshaped_segments[train_test_split]
train_y = labels[train_test_split]
test_x = reshaped_segments[~train_test_split]
test_y = labels[~train_test_split]
input_height = 1
input_width = 17
num_labels = 7
num_channels = 3
batch_size = 100
kernel_size = 5
depth = 60
num_hidden = 1000
learning_rate = 0.0001
training_epochs = 10
total_batchs = train_x.shape[0] // batch_size
def weight_variable(shape):
initial = tf.truncated_normal(shape, stddev = 0.1)
return tf.Variable(initial)
def bias_variable(shape):
initial = tf.constant(0.0, shape = shape)
return tf.Variable(initial)
def depthwise_conv2d(x, W):
return tf.nn.depthwise_conv2d(x,W, [1, 1, 1, 1], padding='VALID')
def apply_depthwise_conv(x,kernel_size,num_channels,depth):
weights = weight_variable([1, kernel_size, num_channels, depth])
biases = bias_variable([depth * num_channels])
return tf.nn.relu(tf.add(depthwise_conv2d(x, weights),biases))
def apply_max_pool(x,kernel_size,stride_size):
return tf.nn.max_pool(x, ksize=[1, 1, kernel_size, 1],
strides=[1, 1, stride_size, 1], padding='VALID')
X = tf.placeholder(tf.float32, shape=[None,input_height,input_width,num_channels],name="Mul")
Y = tf.placeholder(tf.float32, shape=[None,num_labels])
c = apply_depthwise_conv(X,kernel_size,num_channels,depth)
p = apply_max_pool(c,4,2)
c = apply_depthwise_conv(p,3,depth*num_channels,depth//6)
shape = c.get_shape().as_list()
c_flat = tf.reshape(c, [-1, shape[1] * shape[2] * shape[3]])
f_weights_l1 = weight_variable([shape[1] * shape[2] * depth * num_channels * (depth//6), num_hidden]) #10
f_biases_l1 = bias_variable([num_hidden])
f = tf.nn.tanh(tf.add(tf.matmul(c_flat, f_weights_l1),f_biases_l1))
out_weights = weight_variable([num_hidden, num_labels])
out_biases = bias_variable([num_labels])
y_ = tf.nn.softmax(tf.matmul(f, out_weights) + out_biases, name="y_")
loss = -tf.reduce_sum(Y * tf.log(y_))
optimizer = tf.train.GradientDescentOptimizer(learning_rate = learning_rate).minimize(loss)
correct_prediction = tf.equal(tf.argmax(y_,1), tf.argmax(Y,1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
saver = tf.train.Saver()
with tf.Session() as session:
tf.global_variables_initializer().run()
for epoch in range(training_epochs):
cost_history = np.empty(shape=[1],dtype=float)
for b in range(total_batchs):
offset = (b * batch_size) % (train_y.shape[0] - batch_size)
batch_x = train_x[offset:(offset + batch_size), :, :, :]
batch_y = train_y[offset:(offset + batch_size), :]
_, c = session.run([optimizer, loss],feed_dict={X: batch_x, Y : batch_y})
cost_history = np.append(cost_history,c)
print ("Epoch: ",epoch," Training Loss: ",c," Training Accuracy: ",
session.run(accuracy, feed_dict={X: train_x, Y: train_y}))
print ("Testing Accuracy:", session.run(accuracy, feed_dict={X: test_x, Y: test_y}))
tf.train.write_graph(session.graph_def, '.', '../har.pbtxt')
saver.save(session,save_path = "../har.ckpt")
In the last line encounter this error message
ValueError: Cannot feed value of shape (10, 9) for Tensor 'Placeholder_2:0', which has shape '(?, 7)'
I tried changing some values but still I cannot fix this error.
What can I do to resolve this error?
python tensorflow machine-learning
add a comment |
I am using Tensorflow to train my data for gesture recognition. Here is my Code:
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from scipy import stats
import tensorflow as tf
%matplotlib inline
plt.style.use('ggplot')
def read_data(file_path):
column_names = ['user-id','activity','timestamp','x-axis','y-axis','z-axis']
data = pd.read_csv(file_path,header = None, names = column_names, comment=';')
return data
def feature_normalize(dataset):
mu = np.mean(dataset,axis = 0)
sigma = np.std(dataset,axis = 0)
return (dataset - mu)/sigma
def plot_axis(ax, x, y, title):
ax.plot(x, y)
ax.set_title(title)
ax.xaxis.set_visible(False)
ax.set_ylim([min(y) - np.std(y), max(y) + np.std(y)])
ax.set_xlim([min(x), max(x)])
ax.grid(True)
def plot_activity(activity,data):
fig, (ax0, ax1, ax2) = plt.subplots(nrows = 3, figsize = (15, 10), sharex = True)
plot_axis(ax0, data['timestamp'], data['x-axis'], 'x-axis')
plot_axis(ax1, data['timestamp'], data['y-axis'], 'y-axis')
plot_axis(ax2, data['timestamp'], data['z-axis'], 'z-axis')
plt.subplots_adjust(hspace=0.2)
fig.suptitle(activity)
plt.subplots_adjust(top=0.90)
plt.show()
dataset = read_data('C:\Users\ASUS\Desktop\final_data.txt')
dataset['x-axis'] = feature_normalize(dataset['x-axis'])
dataset['y-axis'] = feature_normalize(dataset['y-axis'])
dataset['z-axis'] = feature_normalize(dataset['z-axis'])
for activity in np.unique(dataset["activity"]):
subset = dataset[dataset["activity"] == activity][:34]
plot_activity(activity,subset)
def windows(data, size):
start = 0
while start < data.count():
yield int(start), int(start + size)
start += (size / 2)
def segment_signal(data,window_size = 17):
segments = np.empty((0,window_size,3))
labels = np.empty((0))
for (start, end) in windows(data["timestamp"], window_size):
x = data["x-axis"][start:end]
y = data["y-axis"][start:end]
z = data["z-axis"][start:end]
if(len(dataset["timestamp"][start:end]) == window_size):
segments = np.vstack([segments,np.dstack([x,y,z])])
labels = np.append(labels,stats.mode(data["activity"][start:end])[0][0])
return segments, labels
segments, labels = segment_signal(dataset)
labels = np.asarray(pd.get_dummies(labels), dtype = np.int8)
reshaped_segments = segments.reshape(len(segments), 1,17, 3)
train_test_split = np.random.rand(len(reshaped_segments)) < 0.80
train_x = reshaped_segments[train_test_split]
train_y = labels[train_test_split]
test_x = reshaped_segments[~train_test_split]
test_y = labels[~train_test_split]
input_height = 1
input_width = 17
num_labels = 7
num_channels = 3
batch_size = 100
kernel_size = 5
depth = 60
num_hidden = 1000
learning_rate = 0.0001
training_epochs = 10
total_batchs = train_x.shape[0] // batch_size
def weight_variable(shape):
initial = tf.truncated_normal(shape, stddev = 0.1)
return tf.Variable(initial)
def bias_variable(shape):
initial = tf.constant(0.0, shape = shape)
return tf.Variable(initial)
def depthwise_conv2d(x, W):
return tf.nn.depthwise_conv2d(x,W, [1, 1, 1, 1], padding='VALID')
def apply_depthwise_conv(x,kernel_size,num_channels,depth):
weights = weight_variable([1, kernel_size, num_channels, depth])
biases = bias_variable([depth * num_channels])
return tf.nn.relu(tf.add(depthwise_conv2d(x, weights),biases))
def apply_max_pool(x,kernel_size,stride_size):
return tf.nn.max_pool(x, ksize=[1, 1, kernel_size, 1],
strides=[1, 1, stride_size, 1], padding='VALID')
X = tf.placeholder(tf.float32, shape=[None,input_height,input_width,num_channels],name="Mul")
Y = tf.placeholder(tf.float32, shape=[None,num_labels])
c = apply_depthwise_conv(X,kernel_size,num_channels,depth)
p = apply_max_pool(c,4,2)
c = apply_depthwise_conv(p,3,depth*num_channels,depth//6)
shape = c.get_shape().as_list()
c_flat = tf.reshape(c, [-1, shape[1] * shape[2] * shape[3]])
f_weights_l1 = weight_variable([shape[1] * shape[2] * depth * num_channels * (depth//6), num_hidden]) #10
f_biases_l1 = bias_variable([num_hidden])
f = tf.nn.tanh(tf.add(tf.matmul(c_flat, f_weights_l1),f_biases_l1))
out_weights = weight_variable([num_hidden, num_labels])
out_biases = bias_variable([num_labels])
y_ = tf.nn.softmax(tf.matmul(f, out_weights) + out_biases, name="y_")
loss = -tf.reduce_sum(Y * tf.log(y_))
optimizer = tf.train.GradientDescentOptimizer(learning_rate = learning_rate).minimize(loss)
correct_prediction = tf.equal(tf.argmax(y_,1), tf.argmax(Y,1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
saver = tf.train.Saver()
with tf.Session() as session:
tf.global_variables_initializer().run()
for epoch in range(training_epochs):
cost_history = np.empty(shape=[1],dtype=float)
for b in range(total_batchs):
offset = (b * batch_size) % (train_y.shape[0] - batch_size)
batch_x = train_x[offset:(offset + batch_size), :, :, :]
batch_y = train_y[offset:(offset + batch_size), :]
_, c = session.run([optimizer, loss],feed_dict={X: batch_x, Y : batch_y})
cost_history = np.append(cost_history,c)
print ("Epoch: ",epoch," Training Loss: ",c," Training Accuracy: ",
session.run(accuracy, feed_dict={X: train_x, Y: train_y}))
print ("Testing Accuracy:", session.run(accuracy, feed_dict={X: test_x, Y: test_y}))
tf.train.write_graph(session.graph_def, '.', '../har.pbtxt')
saver.save(session,save_path = "../har.ckpt")
In the last line encounter this error message
ValueError: Cannot feed value of shape (10, 9) for Tensor 'Placeholder_2:0', which has shape '(?, 7)'
I tried changing some values but still I cannot fix this error.
What can I do to resolve this error?
python tensorflow machine-learning
Since you feed a (10 x 9) tensor into Y = tf.placeholder(tf.float32, shape=[None,num_labels]), which has shape (batch_size, 7). You need to check the length of Y should be 7 or 9.
– HaoChien Hung
Nov 18 '18 at 11:20
add a comment |
I am using Tensorflow to train my data for gesture recognition. Here is my Code:
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from scipy import stats
import tensorflow as tf
%matplotlib inline
plt.style.use('ggplot')
def read_data(file_path):
column_names = ['user-id','activity','timestamp','x-axis','y-axis','z-axis']
data = pd.read_csv(file_path,header = None, names = column_names, comment=';')
return data
def feature_normalize(dataset):
mu = np.mean(dataset,axis = 0)
sigma = np.std(dataset,axis = 0)
return (dataset - mu)/sigma
def plot_axis(ax, x, y, title):
ax.plot(x, y)
ax.set_title(title)
ax.xaxis.set_visible(False)
ax.set_ylim([min(y) - np.std(y), max(y) + np.std(y)])
ax.set_xlim([min(x), max(x)])
ax.grid(True)
def plot_activity(activity,data):
fig, (ax0, ax1, ax2) = plt.subplots(nrows = 3, figsize = (15, 10), sharex = True)
plot_axis(ax0, data['timestamp'], data['x-axis'], 'x-axis')
plot_axis(ax1, data['timestamp'], data['y-axis'], 'y-axis')
plot_axis(ax2, data['timestamp'], data['z-axis'], 'z-axis')
plt.subplots_adjust(hspace=0.2)
fig.suptitle(activity)
plt.subplots_adjust(top=0.90)
plt.show()
dataset = read_data('C:\Users\ASUS\Desktop\final_data.txt')
dataset['x-axis'] = feature_normalize(dataset['x-axis'])
dataset['y-axis'] = feature_normalize(dataset['y-axis'])
dataset['z-axis'] = feature_normalize(dataset['z-axis'])
for activity in np.unique(dataset["activity"]):
subset = dataset[dataset["activity"] == activity][:34]
plot_activity(activity,subset)
def windows(data, size):
start = 0
while start < data.count():
yield int(start), int(start + size)
start += (size / 2)
def segment_signal(data,window_size = 17):
segments = np.empty((0,window_size,3))
labels = np.empty((0))
for (start, end) in windows(data["timestamp"], window_size):
x = data["x-axis"][start:end]
y = data["y-axis"][start:end]
z = data["z-axis"][start:end]
if(len(dataset["timestamp"][start:end]) == window_size):
segments = np.vstack([segments,np.dstack([x,y,z])])
labels = np.append(labels,stats.mode(data["activity"][start:end])[0][0])
return segments, labels
segments, labels = segment_signal(dataset)
labels = np.asarray(pd.get_dummies(labels), dtype = np.int8)
reshaped_segments = segments.reshape(len(segments), 1,17, 3)
train_test_split = np.random.rand(len(reshaped_segments)) < 0.80
train_x = reshaped_segments[train_test_split]
train_y = labels[train_test_split]
test_x = reshaped_segments[~train_test_split]
test_y = labels[~train_test_split]
input_height = 1
input_width = 17
num_labels = 7
num_channels = 3
batch_size = 100
kernel_size = 5
depth = 60
num_hidden = 1000
learning_rate = 0.0001
training_epochs = 10
total_batchs = train_x.shape[0] // batch_size
def weight_variable(shape):
initial = tf.truncated_normal(shape, stddev = 0.1)
return tf.Variable(initial)
def bias_variable(shape):
initial = tf.constant(0.0, shape = shape)
return tf.Variable(initial)
def depthwise_conv2d(x, W):
return tf.nn.depthwise_conv2d(x,W, [1, 1, 1, 1], padding='VALID')
def apply_depthwise_conv(x,kernel_size,num_channels,depth):
weights = weight_variable([1, kernel_size, num_channels, depth])
biases = bias_variable([depth * num_channels])
return tf.nn.relu(tf.add(depthwise_conv2d(x, weights),biases))
def apply_max_pool(x,kernel_size,stride_size):
return tf.nn.max_pool(x, ksize=[1, 1, kernel_size, 1],
strides=[1, 1, stride_size, 1], padding='VALID')
X = tf.placeholder(tf.float32, shape=[None,input_height,input_width,num_channels],name="Mul")
Y = tf.placeholder(tf.float32, shape=[None,num_labels])
c = apply_depthwise_conv(X,kernel_size,num_channels,depth)
p = apply_max_pool(c,4,2)
c = apply_depthwise_conv(p,3,depth*num_channels,depth//6)
shape = c.get_shape().as_list()
c_flat = tf.reshape(c, [-1, shape[1] * shape[2] * shape[3]])
f_weights_l1 = weight_variable([shape[1] * shape[2] * depth * num_channels * (depth//6), num_hidden]) #10
f_biases_l1 = bias_variable([num_hidden])
f = tf.nn.tanh(tf.add(tf.matmul(c_flat, f_weights_l1),f_biases_l1))
out_weights = weight_variable([num_hidden, num_labels])
out_biases = bias_variable([num_labels])
y_ = tf.nn.softmax(tf.matmul(f, out_weights) + out_biases, name="y_")
loss = -tf.reduce_sum(Y * tf.log(y_))
optimizer = tf.train.GradientDescentOptimizer(learning_rate = learning_rate).minimize(loss)
correct_prediction = tf.equal(tf.argmax(y_,1), tf.argmax(Y,1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
saver = tf.train.Saver()
with tf.Session() as session:
tf.global_variables_initializer().run()
for epoch in range(training_epochs):
cost_history = np.empty(shape=[1],dtype=float)
for b in range(total_batchs):
offset = (b * batch_size) % (train_y.shape[0] - batch_size)
batch_x = train_x[offset:(offset + batch_size), :, :, :]
batch_y = train_y[offset:(offset + batch_size), :]
_, c = session.run([optimizer, loss],feed_dict={X: batch_x, Y : batch_y})
cost_history = np.append(cost_history,c)
print ("Epoch: ",epoch," Training Loss: ",c," Training Accuracy: ",
session.run(accuracy, feed_dict={X: train_x, Y: train_y}))
print ("Testing Accuracy:", session.run(accuracy, feed_dict={X: test_x, Y: test_y}))
tf.train.write_graph(session.graph_def, '.', '../har.pbtxt')
saver.save(session,save_path = "../har.ckpt")
In the last line encounter this error message
ValueError: Cannot feed value of shape (10, 9) for Tensor 'Placeholder_2:0', which has shape '(?, 7)'
I tried changing some values but still I cannot fix this error.
What can I do to resolve this error?
python tensorflow machine-learning
I am using Tensorflow to train my data for gesture recognition. Here is my Code:
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from scipy import stats
import tensorflow as tf
%matplotlib inline
plt.style.use('ggplot')
def read_data(file_path):
column_names = ['user-id','activity','timestamp','x-axis','y-axis','z-axis']
data = pd.read_csv(file_path,header = None, names = column_names, comment=';')
return data
def feature_normalize(dataset):
mu = np.mean(dataset,axis = 0)
sigma = np.std(dataset,axis = 0)
return (dataset - mu)/sigma
def plot_axis(ax, x, y, title):
ax.plot(x, y)
ax.set_title(title)
ax.xaxis.set_visible(False)
ax.set_ylim([min(y) - np.std(y), max(y) + np.std(y)])
ax.set_xlim([min(x), max(x)])
ax.grid(True)
def plot_activity(activity,data):
fig, (ax0, ax1, ax2) = plt.subplots(nrows = 3, figsize = (15, 10), sharex = True)
plot_axis(ax0, data['timestamp'], data['x-axis'], 'x-axis')
plot_axis(ax1, data['timestamp'], data['y-axis'], 'y-axis')
plot_axis(ax2, data['timestamp'], data['z-axis'], 'z-axis')
plt.subplots_adjust(hspace=0.2)
fig.suptitle(activity)
plt.subplots_adjust(top=0.90)
plt.show()
dataset = read_data('C:\Users\ASUS\Desktop\final_data.txt')
dataset['x-axis'] = feature_normalize(dataset['x-axis'])
dataset['y-axis'] = feature_normalize(dataset['y-axis'])
dataset['z-axis'] = feature_normalize(dataset['z-axis'])
for activity in np.unique(dataset["activity"]):
subset = dataset[dataset["activity"] == activity][:34]
plot_activity(activity,subset)
def windows(data, size):
start = 0
while start < data.count():
yield int(start), int(start + size)
start += (size / 2)
def segment_signal(data,window_size = 17):
segments = np.empty((0,window_size,3))
labels = np.empty((0))
for (start, end) in windows(data["timestamp"], window_size):
x = data["x-axis"][start:end]
y = data["y-axis"][start:end]
z = data["z-axis"][start:end]
if(len(dataset["timestamp"][start:end]) == window_size):
segments = np.vstack([segments,np.dstack([x,y,z])])
labels = np.append(labels,stats.mode(data["activity"][start:end])[0][0])
return segments, labels
segments, labels = segment_signal(dataset)
labels = np.asarray(pd.get_dummies(labels), dtype = np.int8)
reshaped_segments = segments.reshape(len(segments), 1,17, 3)
train_test_split = np.random.rand(len(reshaped_segments)) < 0.80
train_x = reshaped_segments[train_test_split]
train_y = labels[train_test_split]
test_x = reshaped_segments[~train_test_split]
test_y = labels[~train_test_split]
input_height = 1
input_width = 17
num_labels = 7
num_channels = 3
batch_size = 100
kernel_size = 5
depth = 60
num_hidden = 1000
learning_rate = 0.0001
training_epochs = 10
total_batchs = train_x.shape[0] // batch_size
def weight_variable(shape):
initial = tf.truncated_normal(shape, stddev = 0.1)
return tf.Variable(initial)
def bias_variable(shape):
initial = tf.constant(0.0, shape = shape)
return tf.Variable(initial)
def depthwise_conv2d(x, W):
return tf.nn.depthwise_conv2d(x,W, [1, 1, 1, 1], padding='VALID')
def apply_depthwise_conv(x,kernel_size,num_channels,depth):
weights = weight_variable([1, kernel_size, num_channels, depth])
biases = bias_variable([depth * num_channels])
return tf.nn.relu(tf.add(depthwise_conv2d(x, weights),biases))
def apply_max_pool(x,kernel_size,stride_size):
return tf.nn.max_pool(x, ksize=[1, 1, kernel_size, 1],
strides=[1, 1, stride_size, 1], padding='VALID')
X = tf.placeholder(tf.float32, shape=[None,input_height,input_width,num_channels],name="Mul")
Y = tf.placeholder(tf.float32, shape=[None,num_labels])
c = apply_depthwise_conv(X,kernel_size,num_channels,depth)
p = apply_max_pool(c,4,2)
c = apply_depthwise_conv(p,3,depth*num_channels,depth//6)
shape = c.get_shape().as_list()
c_flat = tf.reshape(c, [-1, shape[1] * shape[2] * shape[3]])
f_weights_l1 = weight_variable([shape[1] * shape[2] * depth * num_channels * (depth//6), num_hidden]) #10
f_biases_l1 = bias_variable([num_hidden])
f = tf.nn.tanh(tf.add(tf.matmul(c_flat, f_weights_l1),f_biases_l1))
out_weights = weight_variable([num_hidden, num_labels])
out_biases = bias_variable([num_labels])
y_ = tf.nn.softmax(tf.matmul(f, out_weights) + out_biases, name="y_")
loss = -tf.reduce_sum(Y * tf.log(y_))
optimizer = tf.train.GradientDescentOptimizer(learning_rate = learning_rate).minimize(loss)
correct_prediction = tf.equal(tf.argmax(y_,1), tf.argmax(Y,1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
saver = tf.train.Saver()
with tf.Session() as session:
tf.global_variables_initializer().run()
for epoch in range(training_epochs):
cost_history = np.empty(shape=[1],dtype=float)
for b in range(total_batchs):
offset = (b * batch_size) % (train_y.shape[0] - batch_size)
batch_x = train_x[offset:(offset + batch_size), :, :, :]
batch_y = train_y[offset:(offset + batch_size), :]
_, c = session.run([optimizer, loss],feed_dict={X: batch_x, Y : batch_y})
cost_history = np.append(cost_history,c)
print ("Epoch: ",epoch," Training Loss: ",c," Training Accuracy: ",
session.run(accuracy, feed_dict={X: train_x, Y: train_y}))
print ("Testing Accuracy:", session.run(accuracy, feed_dict={X: test_x, Y: test_y}))
tf.train.write_graph(session.graph_def, '.', '../har.pbtxt')
saver.save(session,save_path = "../har.ckpt")
In the last line encounter this error message
ValueError: Cannot feed value of shape (10, 9) for Tensor 'Placeholder_2:0', which has shape '(?, 7)'
I tried changing some values but still I cannot fix this error.
What can I do to resolve this error?
python tensorflow machine-learning
python tensorflow machine-learning
asked Nov 18 '18 at 6:45
Eugene AgustinEugene Agustin
12
12
Since you feed a (10 x 9) tensor into Y = tf.placeholder(tf.float32, shape=[None,num_labels]), which has shape (batch_size, 7). You need to check the length of Y should be 7 or 9.
– HaoChien Hung
Nov 18 '18 at 11:20
add a comment |
Since you feed a (10 x 9) tensor into Y = tf.placeholder(tf.float32, shape=[None,num_labels]), which has shape (batch_size, 7). You need to check the length of Y should be 7 or 9.
– HaoChien Hung
Nov 18 '18 at 11:20
Since you feed a (10 x 9) tensor into Y = tf.placeholder(tf.float32, shape=[None,num_labels]), which has shape (batch_size, 7). You need to check the length of Y should be 7 or 9.
– HaoChien Hung
Nov 18 '18 at 11:20
Since you feed a (10 x 9) tensor into Y = tf.placeholder(tf.float32, shape=[None,num_labels]), which has shape (batch_size, 7). You need to check the length of Y should be 7 or 9.
– HaoChien Hung
Nov 18 '18 at 11:20
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
StackExchange.using("externalEditor", function () {
StackExchange.using("snippets", function () {
StackExchange.snippets.init();
});
});
}, "code-snippets");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "1"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53358537%2ftensorflow-cannot-feed-value-of-shape-10-9-for-tensor-placeholder-20-whic%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Stack Overflow!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53358537%2ftensorflow-cannot-feed-value-of-shape-10-9-for-tensor-placeholder-20-whic%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Since you feed a (10 x 9) tensor into Y = tf.placeholder(tf.float32, shape=[None,num_labels]), which has shape (batch_size, 7). You need to check the length of Y should be 7 or 9.
– HaoChien Hung
Nov 18 '18 at 11:20