Tree search based Game AI: How to avoid AI 'wandering'/'procrastination' with sparse rewards?












0














My game AI makes use of an algorithm that searches all possible future states based on the moves I can make (minimax / monte carlo esque). It evaluates these states using a scoring system, picks the highest scored final state and follows it.



This works well in most situations, but awfully when rewards are sparse. For example: there's a desirable collectable object that's 3 tiles to the right of me. The natural solution would be to go right->right->right.



But, my algorithm searches 6 turns deep. And it will will find many paths that eventually collect the object, including ones that take longer than 3 turns. It might for example find a path that's: up->right->down->right->right->down, collecting the object on turn 5 instead.



Since in both cases, the final leaf nodes detect the object as collected, it doesn't naturally prefer one or the other. So, instead of going right on turn 1, it might go up, or down, or left. This behavior will be repeated exactly on the next turn, so that it basically ends up dancing randomly in front of the collectable object, only luck will make it step on it.



That's clearly suboptimal and I want to fix it, but have run out of ideas how to handle this appropriately. Are there any solutions for this issue or is there any theoretical work that deals with handling this issue?



Solutions I've tried:




  • Make it value object collection more on earlier turns. While this works, to beat evaluator 'noise', the difference between turns must be quite high. Turn 1 must be rated higher than 2, turn 2 rated higher than 3, etc. The difference between turn 1 and 6 needs to be so high that it ends up making the behavior extremely greedy, which is not desirable in most situations. In an environment with multiple objects, it might end up choosing the path that grabs an object on turn 1, instead of the much better path that can grab objects on turn 5 and 6.


  • Assign the object as a target and value distance to it. If not done on a turn to turn basis, the original problem persists. If done on a turn to turn basis, the difference in importance required per turn once again makes it too greedy. This method also decreases flexibility and causes other issues. Target selection is not trivial and kind of ruins the point of a minimax style algorithm


  • Going much deeper in my searches so that it can always find a second object. This would cost so much computing power that I'd have to make concessions, like pruning paths much more aggressively. If I do so, I'll be back at the same problem since I won't know how to get it to prefer pruning the 5 turn version over the 3 turn version.


  • Give extra value to the plans laid out last turn. If it can at least follow the suboptimal path, there wouldn't be as much of an issue. Unfortunately, this once again has to be a pretty strong effect for it to work reliably, making it follow sub-optimal paths in all scenarios, hurting overall performance.











share|improve this question



























    0














    My game AI makes use of an algorithm that searches all possible future states based on the moves I can make (minimax / monte carlo esque). It evaluates these states using a scoring system, picks the highest scored final state and follows it.



    This works well in most situations, but awfully when rewards are sparse. For example: there's a desirable collectable object that's 3 tiles to the right of me. The natural solution would be to go right->right->right.



    But, my algorithm searches 6 turns deep. And it will will find many paths that eventually collect the object, including ones that take longer than 3 turns. It might for example find a path that's: up->right->down->right->right->down, collecting the object on turn 5 instead.



    Since in both cases, the final leaf nodes detect the object as collected, it doesn't naturally prefer one or the other. So, instead of going right on turn 1, it might go up, or down, or left. This behavior will be repeated exactly on the next turn, so that it basically ends up dancing randomly in front of the collectable object, only luck will make it step on it.



    That's clearly suboptimal and I want to fix it, but have run out of ideas how to handle this appropriately. Are there any solutions for this issue or is there any theoretical work that deals with handling this issue?



    Solutions I've tried:




    • Make it value object collection more on earlier turns. While this works, to beat evaluator 'noise', the difference between turns must be quite high. Turn 1 must be rated higher than 2, turn 2 rated higher than 3, etc. The difference between turn 1 and 6 needs to be so high that it ends up making the behavior extremely greedy, which is not desirable in most situations. In an environment with multiple objects, it might end up choosing the path that grabs an object on turn 1, instead of the much better path that can grab objects on turn 5 and 6.


    • Assign the object as a target and value distance to it. If not done on a turn to turn basis, the original problem persists. If done on a turn to turn basis, the difference in importance required per turn once again makes it too greedy. This method also decreases flexibility and causes other issues. Target selection is not trivial and kind of ruins the point of a minimax style algorithm


    • Going much deeper in my searches so that it can always find a second object. This would cost so much computing power that I'd have to make concessions, like pruning paths much more aggressively. If I do so, I'll be back at the same problem since I won't know how to get it to prefer pruning the 5 turn version over the 3 turn version.


    • Give extra value to the plans laid out last turn. If it can at least follow the suboptimal path, there wouldn't be as much of an issue. Unfortunately, this once again has to be a pretty strong effect for it to work reliably, making it follow sub-optimal paths in all scenarios, hurting overall performance.











    share|improve this question

























      0












      0








      0







      My game AI makes use of an algorithm that searches all possible future states based on the moves I can make (minimax / monte carlo esque). It evaluates these states using a scoring system, picks the highest scored final state and follows it.



      This works well in most situations, but awfully when rewards are sparse. For example: there's a desirable collectable object that's 3 tiles to the right of me. The natural solution would be to go right->right->right.



      But, my algorithm searches 6 turns deep. And it will will find many paths that eventually collect the object, including ones that take longer than 3 turns. It might for example find a path that's: up->right->down->right->right->down, collecting the object on turn 5 instead.



      Since in both cases, the final leaf nodes detect the object as collected, it doesn't naturally prefer one or the other. So, instead of going right on turn 1, it might go up, or down, or left. This behavior will be repeated exactly on the next turn, so that it basically ends up dancing randomly in front of the collectable object, only luck will make it step on it.



      That's clearly suboptimal and I want to fix it, but have run out of ideas how to handle this appropriately. Are there any solutions for this issue or is there any theoretical work that deals with handling this issue?



      Solutions I've tried:




      • Make it value object collection more on earlier turns. While this works, to beat evaluator 'noise', the difference between turns must be quite high. Turn 1 must be rated higher than 2, turn 2 rated higher than 3, etc. The difference between turn 1 and 6 needs to be so high that it ends up making the behavior extremely greedy, which is not desirable in most situations. In an environment with multiple objects, it might end up choosing the path that grabs an object on turn 1, instead of the much better path that can grab objects on turn 5 and 6.


      • Assign the object as a target and value distance to it. If not done on a turn to turn basis, the original problem persists. If done on a turn to turn basis, the difference in importance required per turn once again makes it too greedy. This method also decreases flexibility and causes other issues. Target selection is not trivial and kind of ruins the point of a minimax style algorithm


      • Going much deeper in my searches so that it can always find a second object. This would cost so much computing power that I'd have to make concessions, like pruning paths much more aggressively. If I do so, I'll be back at the same problem since I won't know how to get it to prefer pruning the 5 turn version over the 3 turn version.


      • Give extra value to the plans laid out last turn. If it can at least follow the suboptimal path, there wouldn't be as much of an issue. Unfortunately, this once again has to be a pretty strong effect for it to work reliably, making it follow sub-optimal paths in all scenarios, hurting overall performance.











      share|improve this question













      My game AI makes use of an algorithm that searches all possible future states based on the moves I can make (minimax / monte carlo esque). It evaluates these states using a scoring system, picks the highest scored final state and follows it.



      This works well in most situations, but awfully when rewards are sparse. For example: there's a desirable collectable object that's 3 tiles to the right of me. The natural solution would be to go right->right->right.



      But, my algorithm searches 6 turns deep. And it will will find many paths that eventually collect the object, including ones that take longer than 3 turns. It might for example find a path that's: up->right->down->right->right->down, collecting the object on turn 5 instead.



      Since in both cases, the final leaf nodes detect the object as collected, it doesn't naturally prefer one or the other. So, instead of going right on turn 1, it might go up, or down, or left. This behavior will be repeated exactly on the next turn, so that it basically ends up dancing randomly in front of the collectable object, only luck will make it step on it.



      That's clearly suboptimal and I want to fix it, but have run out of ideas how to handle this appropriately. Are there any solutions for this issue or is there any theoretical work that deals with handling this issue?



      Solutions I've tried:




      • Make it value object collection more on earlier turns. While this works, to beat evaluator 'noise', the difference between turns must be quite high. Turn 1 must be rated higher than 2, turn 2 rated higher than 3, etc. The difference between turn 1 and 6 needs to be so high that it ends up making the behavior extremely greedy, which is not desirable in most situations. In an environment with multiple objects, it might end up choosing the path that grabs an object on turn 1, instead of the much better path that can grab objects on turn 5 and 6.


      • Assign the object as a target and value distance to it. If not done on a turn to turn basis, the original problem persists. If done on a turn to turn basis, the difference in importance required per turn once again makes it too greedy. This method also decreases flexibility and causes other issues. Target selection is not trivial and kind of ruins the point of a minimax style algorithm


      • Going much deeper in my searches so that it can always find a second object. This would cost so much computing power that I'd have to make concessions, like pruning paths much more aggressively. If I do so, I'll be back at the same problem since I won't know how to get it to prefer pruning the 5 turn version over the 3 turn version.


      • Give extra value to the plans laid out last turn. If it can at least follow the suboptimal path, there wouldn't be as much of an issue. Unfortunately, this once again has to be a pretty strong effect for it to work reliably, making it follow sub-optimal paths in all scenarios, hurting overall performance.








      artificial-intelligence minimax game-ai monte-carlo-tree-search






      share|improve this question













      share|improve this question











      share|improve this question




      share|improve this question










      asked Nov 13 at 11:52









      AnythingElse

      396




      396





























          active

          oldest

          votes











          Your Answer






          StackExchange.ifUsing("editor", function () {
          StackExchange.using("externalEditor", function () {
          StackExchange.using("snippets", function () {
          StackExchange.snippets.init();
          });
          });
          }, "code-snippets");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "1"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53280469%2ftree-search-based-game-ai-how-to-avoid-ai-wandering-procrastination-with-sp%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown






























          active

          oldest

          votes













          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes
















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Stack Overflow!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          To learn more, see our tips on writing great answers.





          Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


          Please pay close attention to the following guidance:


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53280469%2ftree-search-based-game-ai-how-to-avoid-ai-wandering-procrastination-with-sp%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          鏡平學校

          ꓛꓣだゔៀៅຸ໢ທຮ໕໒ ,ໂ'໥໓າ໼ឨឲ៵៭ៈゎゔit''䖳𥁄卿' ☨₤₨こゎもょの;ꜹꟚꞖꞵꟅꞛေၦေɯ,ɨɡ𛃵𛁹ޝ޳ޠ޾,ޤޒޯ޾𫝒𫠁သ𛅤チョ'サノބޘދ𛁐ᶿᶇᶀᶋᶠ㨑㽹⻮ꧬ꧹؍۩وَؠ㇕㇃㇪ ㇦㇋㇋ṜẰᵡᴠ 軌ᵕ搜۳ٰޗޮ޷ސޯ𫖾𫅀ल, ꙭ꙰ꚅꙁꚊꞻꝔ꟠Ꝭㄤﺟޱސꧨꧼ꧴ꧯꧽ꧲ꧯ'⽹⽭⾁⿞⼳⽋២៩ញណើꩯꩤ꩸ꩮᶻᶺᶧᶂ𫳲𫪭𬸄𫵰𬖩𬫣𬊉ၲ𛅬㕦䬺𫝌𫝼,,𫟖𫞽ហៅ஫㆔ాఆఅꙒꚞꙍ,Ꙟ꙱エ ,ポテ,フࢰࢯ𫟠𫞶 𫝤𫟠ﺕﹱﻜﻣ𪵕𪭸𪻆𪾩𫔷ġ,ŧآꞪ꟥,ꞔꝻ♚☹⛵𛀌ꬷꭞȄƁƪƬșƦǙǗdžƝǯǧⱦⱰꓕꓢႋ神 ဴ၀க௭எ௫ឫោ ' េㇷㇴㇼ神ㇸㇲㇽㇴㇼㇻㇸ'ㇸㇿㇸㇹㇰㆣꓚꓤ₡₧ ㄨㄟ㄂ㄖㄎ໗ツڒذ₶।ऩछएोञयूटक़कयँृी,冬'𛅢𛅥ㇱㇵㇶ𥄥𦒽𠣧𠊓𧢖𥞘𩔋цѰㄠſtʯʭɿʆʗʍʩɷɛ,əʏダヵㄐㄘR{gỚṖḺờṠṫảḙḭᴮᵏᴘᵀᵷᵕᴜᴏᵾq﮲ﲿﴽﭙ軌ﰬﶚﶧ﫲Ҝжюїкӈㇴffצּ﬘﭅﬈軌'ffistfflſtffतभफɳɰʊɲʎ𛁱𛁖𛁮𛀉 𛂯𛀞నఋŀŲ 𫟲𫠖𫞺ຆຆ ໹້໕໗ๆทԊꧢꧠ꧰ꓱ⿝⼑ŎḬẃẖỐẅ ,ờỰỈỗﮊDžȩꭏꭎꬻ꭮ꬿꭖꭥꭅ㇭神 ⾈ꓵꓑ⺄㄄ㄪㄙㄅㄇstA۵䞽ॶ𫞑𫝄㇉㇇゜軌𩜛𩳠Jﻺ‚Üမ႕ႌႊၐၸဓၞၞၡ៸wyvtᶎᶪᶹစဎ꣡꣰꣢꣤ٗ؋لㇳㇾㇻㇱ㆐㆔,,㆟Ⱶヤマފ޼ޝަݿݞݠݷݐ',ݘ,ݪݙݵ𬝉𬜁𫝨𫞘くせぉて¼óû×ó£…𛅑הㄙくԗԀ5606神45,神796'𪤻𫞧ꓐ㄁ㄘɥɺꓵꓲ3''7034׉ⱦⱠˆ“𫝋ȍ,ꩲ軌꩷ꩶꩧꩫఞ۔فڱێظペサ神ナᴦᵑ47 9238їﻂ䐊䔉㠸﬎ffiﬣ,לּᴷᴦᵛᵽ,ᴨᵤ ᵸᵥᴗᵈꚏꚉꚟ⻆rtǟƴ𬎎

          Why https connections are so slow when debugging (stepping over) in Java?