Spectral method








Spectral methods are a class of techniques used in applied mathematics and scientific computing to numerically solve certain differential equations, potentially involving the use of the fast Fourier transform. The idea is to write the solution of the differential equation as a sum of certain "basis functions" (for example, as a Fourier series which is a sum of sinusoids) and then to choose the coefficients in the sum in order to satisfy the differential equation as well as possible.


Spectral methods and finite element methods are closely related and built on the same ideas; the main difference between them is that spectral methods use basis functions that are nonzero over the whole domain, while finite element methods use basis functions that are nonzero only on small subdomains. In other words, spectral methods take on a global approach while finite element methods use a local approach. Partially for this reason, spectral methods have excellent error properties, with the so-called "exponential convergence" being the fastest possible, when the solution is smooth. However, there are no known three-dimensional single domain spectral shock capturing results (shock waves are not smooth).[1] In the finite element community, a method where the degree of the elements is very high or increases as the grid parameter h decreases to zero is sometimes called a spectral element method.


Spectral methods can be used to solve ordinary differential equations (ODEs), partial differential equations (PDEs) and eigenvalue problems involving differential equations. When applying spectral methods to time-dependent PDEs, the solution is typically written as a sum of basis functions with time-dependent coefficients; substituting this in the PDE yields a system of ODEs in the coefficients which can be solved using any numerical method for ODEs. Eigenvalue problems for ODEs are similarly converted to matrix eigenvalue problems[citation needed].


Spectral methods were developed in a long series of papers by Steven Orszag starting in 1969 including, but not limited to, Fourier series methods for periodic geometry problems, polynomial spectral methods for finite and unbounded geometry problems, pseudospectral methods for highly nonlinear problems, and spectral iteration methods for fast solution of steady state problems. The implementation of the spectral method is normally accomplished either with collocation or a Galerkin or a Tau approach.


Spectral methods are computationally less expensive than finite element methods, but become less accurate for problems with complex geometries and discontinuous coefficients. This increase in error is a consequence of the Gibbs phenomenon.




Contents






  • 1 Examples of spectral methods


    • 1.1 A concrete, linear example


      • 1.1.1 Algorithm




    • 1.2 Nonlinear example




  • 2 A relationship with the spectral element method


  • 3 See also


  • 4 References





Examples of spectral methods



A concrete, linear example


Here we presume an understanding of basic multivariate calculus and Fourier series. If g(x,y) is a known, complex-valued function of two real variables, and g is periodic in x and y (that is, g(x,y)=g(x+2π,y)=g(x,y+2π)) then we are interested in finding a function f(x,y) so that


(∂2∂x2+∂2∂y2)f(x,y)=g(x,y)for all x,y{displaystyle left({frac {partial ^{2}}{partial x^{2}}}+{frac {partial ^{2}}{partial y^{2}}}right)f(x,y)=g(x,y)quad {text{for all }}x,y}left(frac{partial^2}{partial x^2}+frac{partial^2}{partial y^2}right)f(x,y)=g(x,y)quad text{for all } x,y

where the expression on the left denotes the second partial derivatives of f in x and y, respectively. This is the Poisson equation, and can be physically interpreted as some sort of heat conduction problem, or a problem in potential theory, among other possibilities.


If we write f and g in Fourier series:



f=:∑aj,kei(jx+ky){displaystyle f=:sum a_{j,k}e^{i(jx+ky)}}f=:sum a_{j,k}e^{i(jx+ky)}

g=:∑bj,kei(jx+ky){displaystyle g=:sum b_{j,k}e^{i(jx+ky)}}g=:sum b_{j,k}e^{i(jx+ky)}


and substitute into the differential equation, we obtain this equation:


aj,k(j2+k2)ei(jx+ky)=∑bj,kei(jx+ky){displaystyle sum -a_{j,k}(j^{2}+k^{2})e^{i(jx+ky)}=sum b_{j,k}e^{i(jx+ky)}}sum -a_{j,k}(j^2+k^2)e^{i(jx+ky)}=sum b_{j,k}e^{i(jx+ky)}

We have exchanged partial differentiation with an infinite sum, which is legitimate if we assume for instance that f has a continuous second derivative. By the uniqueness theorem for Fourier expansions, we must then equate the Fourier coefficients term by term, giving


(*) aj,k=−bj,kj2+k2{displaystyle a_{j,k}=-{frac {b_{j,k}}{j^{2}+k^{2}}}}a_{j,k}=-frac{b_{j,k}}{j^2+k^2}

which is an explicit formula for the Fourier coefficients aj,k.


With periodic boundary conditions, the Poisson equation possesses a solution only if b0,0 = 0. Therefore,
we can freely choose a0,0 which will be equal to the mean of the resolution. This corresponds to choosing the
integration constant.


To turn this into an algorithm, only finitely many frequencies are solved for. This introduces an error which can be shown to be proportional to hn{displaystyle h^{n}}h^n, where h:=1/n{displaystyle h:=1/n}h:=1/n and n{displaystyle n}n is the highest frequency treated.



Algorithm



  1. Compute the Fourier transform (bj,k) of g.

  2. Compute the Fourier transform (aj,k) of f via the formula (*).

  3. Compute f by taking an inverse Fourier transform of (aj,k).


Since we're only interested in a finite window of frequencies (of size n, say) this can be done using a Fast Fourier Transform algorithm. Therefore, globally the algorithm runs in time O(n log n).



Nonlinear example


We wish to solve the forced, transient, nonlinear Burgers' equation using a spectral approach.


Given u(x,0){displaystyle u(x,0)}u(x,0) on the periodic domain
x∈[0,2π){displaystyle xin left[0,2pi right)}xinleft[0,2piright), find u∈U{displaystyle uin {mathcal {U}}}u in mathcal{U} such that


tu+u∂xu=ρxxu+f∀x∈[0,2π),∀t>0{displaystyle partial _{t}u+upartial _{x}u=rho partial _{xx}u+fquad forall xin left[0,2pi right),forall t>0}partial_{t} u + u partial_{x} u = rho partial_{xx} u + f quad forall xinleft[0,2piright), forall t>0

where ρ is the viscosity coefficient. In weak conservative form this becomes


⟨∂tu,v⟩=⟨∂x(−12u2+ρxu),v⟩+⟨f,v⟩∀v∈V,∀t>0{displaystyle leftlangle partial _{t}u,vrightrangle =leftlangle partial _{x}left(-{frac {1}{2}}u^{2}+rho partial _{x}uright),vrightrangle +leftlangle f,vrightrangle quad forall vin {mathcal {V}},forall t>0}{displaystyle leftlangle partial _{t}u,vrightrangle =leftlangle partial _{x}left(-{frac {1}{2}}u^{2}+rho partial _{x}uright),vrightrangle +leftlangle f,vrightrangle quad forall vin {mathcal {V}},forall t>0}

where f,g⟩:=∫02πf(x)g(x)¯dx{displaystyle langle f,grangle :=int _{0}^{2pi }f(x){overline {g(x)}},dx}langle f, g rangle := int_{0}^{2pi} f(x)<br />
  overline{g(x)},dx following inner product notation. Integrating by parts and using periodicity grants


tu,v⟩=⟨12u2−ρxu,∂xv⟩+⟨f,v⟩∀v∈V,∀t>0.{displaystyle langle partial _{t}u,vrangle =leftlangle {frac {1}{2}}u^{2}-rho partial _{x}u,partial _{x}vrightrangle +leftlangle f,vrightrangle quad forall vin {mathcal {V}},forall t>0.}{displaystyle langle partial _{t}u,vrangle =leftlangle {frac {1}{2}}u^{2}-rho partial _{x}u,partial _{x}vrightrangle +leftlangle f,vrightrangle quad forall vin {mathcal {V}},forall t>0.}

To apply the Fourier-Galerkin method, choose both


UN:={u:u(x,t)=∑k=−N/2N/2−1u^k(t)eikx}{displaystyle {mathcal {U}}^{N}:=left{u:u(x,t)=sum _{k=-N/2}^{N/2-1}{hat {u}}_{k}(t)e^{ikx}right}}mathcal{U}^N := left{ u : u(x,t)=sum_{k=-N/2}^{N/2-1} hat{u}_{k}(t) e^{i k x}right}

and


VN:= span{eikx:k∈N/2,…,N/2−1}{displaystyle {mathcal {V}}^{N}:={text{ span}}left{e^{ikx}:kin -N/2,dots ,N/2-1right}}mathcal{V}^N :=text{ span}left{ e^{i k x} : kin -N/2,dots,N/2-1right}

where u^k(t):=12πu(x,t),eikx⟩{displaystyle {hat {u}}_{k}(t):={frac {1}{2pi }}langle u(x,t),e^{ikx}rangle }hat{u}_k(t):=frac{1}{2pi}langle u(x,t), e^{i k x} rangle. This reduces the problem to finding u∈UN{displaystyle uin {mathcal {U}}^{N}}uinmathcal{U}^N such that


tu,eikx⟩=⟨12u2−ρxu,∂xeikx⟩+⟨f,eikx⟩∀k∈{−N/2,…,N/2−1},∀t>0.{displaystyle langle partial _{t}u,e^{ikx}rangle =leftlangle {frac {1}{2}}u^{2}-rho partial _{x}u,partial _{x}e^{ikx}rightrangle +leftlangle f,e^{ikx}rightrangle quad forall kin left{-N/2,dots ,N/2-1right},forall t>0.}{displaystyle langle partial _{t}u,e^{ikx}rangle =leftlangle {frac {1}{2}}u^{2}-rho partial _{x}u,partial _{x}e^{ikx}rightrangle +leftlangle f,e^{ikx}rightrangle quad forall kin left{-N/2,dots ,N/2-1right},forall t>0.}

Using the orthogonality relation eilx,eikx⟩=2πδlk{displaystyle langle e^{ilx},e^{ikx}rangle =2pi delta _{lk}}langle e^{i l x}, e^{i k x} rangle = 2 pi delta_{lk} where δlk{displaystyle delta _{lk}}delta_{lk} is the Kronecker delta, we simplify the above three terms for each k{displaystyle k}k to see


⟨∂tu,eikx⟩=⟨∂t∑lu^leilx,eikx⟩=⟨∑l∂tu^leilx,eikx⟩=2πtu^k,⟨f,eikx⟩=⟨∑lf^leilx,eikx⟩=2πf^k, and⟨12u2−ρxu,∂xeikx⟩=⟨12(∑pu^peipx)(∑qu^qeiqx)−ρx∑lu^leilx,∂xeikx⟩=⟨12∑p∑qu^pu^qei(p+q)x,ikeikx⟩−⟨ρi∑llu^leilx,ikeikx⟩=−ik2⟨∑p∑qu^pu^qei(p+q)x,eikx⟩−ρk⟨∑llu^leilx,eikx⟩=−k∑p+q=ku^pu^q−ρk2u^k.{displaystyle {begin{aligned}leftlangle partial _{t}u,e^{ikx}rightrangle &=leftlangle partial _{t}sum _{l}{hat {u}}_{l}e^{ilx},e^{ikx}rightrangle =leftlangle sum _{l}partial _{t}{hat {u}}_{l}e^{ilx},e^{ikx}rightrangle =2pi partial _{t}{hat {u}}_{k},\leftlangle f,e^{ikx}rightrangle &=leftlangle sum _{l}{hat {f}}_{l}e^{ilx},e^{ikx}rightrangle =2pi {hat {f}}_{k},{text{ and}}\leftlangle {frac {1}{2}}u^{2}-rho partial _{x}u,partial _{x}e^{ikx}rightrangle &=leftlangle {frac {1}{2}}left(sum _{p}{hat {u}}_{p}e^{ipx}right)left(sum _{q}{hat {u}}_{q}e^{iqx}right)-rho partial _{x}sum _{l}{hat {u}}_{l}e^{ilx},partial _{x}e^{ikx}rightrangle \&=leftlangle {frac {1}{2}}sum _{p}sum _{q}{hat {u}}_{p}{hat {u}}_{q}e^{ileft(p+qright)x},ike^{ikx}rightrangle -leftlangle rho isum _{l}l{hat {u}}_{l}e^{ilx},ike^{ikx}rightrangle \&=-{frac {ik}{2}}leftlangle sum _{p}sum _{q}{hat {u}}_{p}{hat {u}}_{q}e^{ileft(p+qright)x},e^{ikx}rightrangle -rho kleftlangle sum _{l}l{hat {u}}_{l}e^{ilx},e^{ikx}rightrangle \&=-ipi ksum _{p+q=k}{hat {u}}_{p}{hat {u}}_{q}-2pi rho {}k^{2}{hat {u}}_{k}.end{aligned}}}{displaystyle {begin{aligned}leftlangle partial _{t}u,e^{ikx}rightrangle &=leftlangle partial _{t}sum _{l}{hat {u}}_{l}e^{ilx},e^{ikx}rightrangle =leftlangle sum _{l}partial _{t}{hat {u}}_{l}e^{ilx},e^{ikx}rightrangle =2pi partial _{t}{hat {u}}_{k},\leftlangle f,e^{ikx}rightrangle &=leftlangle sum _{l}{hat {f}}_{l}e^{ilx},e^{ikx}rightrangle =2pi {hat {f}}_{k},{text{ and}}\leftlangle {frac {1}{2}}u^{2}-rho partial _{x}u,partial _{x}e^{ikx}rightrangle &=leftlangle {frac {1}{2}}left(sum _{p}{hat {u}}_{p}e^{ipx}right)left(sum _{q}{hat {u}}_{q}e^{iqx}right)-rho partial _{x}sum _{l}{hat {u}}_{l}e^{ilx},partial _{x}e^{ikx}rightrangle \&=leftlangle {frac {1}{2}}sum _{p}sum _{q}{hat {u}}_{p}{hat {u}}_{q}e^{ileft(p+qright)x},ike^{ikx}rightrangle -leftlangle rho isum _{l}l{hat {u}}_{l}e^{ilx},ike^{ikx}rightrangle \&=-{frac {ik}{2}}leftlangle sum _{p}sum _{q}{hat {u}}_{p}{hat {u}}_{q}e^{ileft(p+qright)x},e^{ikx}rightrangle -rho kleftlangle sum _{l}l{hat {u}}_{l}e^{ilx},e^{ikx}rightrangle \&=-ipi ksum _{p+q=k}{hat {u}}_{p}{hat {u}}_{q}-2pi rho {}k^{2}{hat {u}}_{k}.end{aligned}}}

Assemble the three terms for each k{displaystyle k}k to obtain


tu^k=−k∑p+q=ku^pu^q−ρk2u^k+2πf^kk∈{−N/2,…,N/2−1},∀t>0.{displaystyle 2pi partial _{t}{hat {u}}_{k}=-ipi ksum _{p+q=k}{hat {u}}_{p}{hat {u}}_{q}-2pi rho {}k^{2}{hat {u}}_{k}+2pi {hat {f}}_{k}quad kin left{-N/2,dots ,N/2-1right},forall t>0.}<br />
2 pi partial_t hat{u}_k<br />
=<br />
- i pi k sum_{p+q=k} hat{u}_p hat{u}_q <br />
- 2pirho{}k^2hat{u}_k<br />
+ 2 pi hat{f}_k<br />
quad kinleft{ -N/2,dots,N/2-1 right}, forall t>0.<br />

Dividing through by {displaystyle 2pi }2pi , we finally arrive at


tu^k=−ik2∑p+q=ku^pu^q−ρk2u^k+f^kk∈{−N/2,…,N/2−1},∀t>0.{displaystyle partial _{t}{hat {u}}_{k}=-{frac {ik}{2}}sum _{p+q=k}{hat {u}}_{p}{hat {u}}_{q}-rho {}k^{2}{hat {u}}_{k}+{hat {f}}_{k}quad kin left{-N/2,dots ,N/2-1right},forall t>0.}<br />
partial_t hat{u}_k<br />
=<br />
- frac{i k}{2} sum_{p+q=k} hat{u}_p hat{u}_q <br />
- rho{}k^2hat{u}_k<br />
+ hat{f}_k<br />
quad kinleft{ -N/2,dots,N/2-1 right}, forall t>0.<br />

With Fourier transformed initial conditions u^k(0){displaystyle {hat {u}}_{k}(0)}hat{u}_{k}(0) and forcing f^k(t){displaystyle {hat {f}}_{k}(t)}hat{f}_{k}(t), this coupled system of ordinary differential equations may be integrated in time (using, e.g., a Runge Kutta technique) to find a solution. The nonlinear term is a convolution, and there are several transform-based techniques for evaluating it efficiently. See the references by Boyd and Canuto et al. for more details.



A relationship with the spectral element method


One can show that if g{displaystyle g}g is infinitely differentiable, then the numerical algorithm using Fast Fourier Transforms will converge faster than any polynomial in the grid size h. That is, for any n>0, there is a Cn<∞{displaystyle C_{n}<infty }{displaystyle C_{n}<infty } such that the error is less than Cnhn{displaystyle C_{n}h^{n}}{displaystyle C_{n}h^{n}} for all sufficiently small values of h{displaystyle h}h. We say that the spectral method is of order n{displaystyle n}n, for every n>0.


Because a spectral element method is a finite element method of very high order, there is a similarity in the convergence properties. However, whereas the spectral method is based on the eigendecomposition of the particular boundary value problem, the finite element method does not use that information and works for arbitrary elliptic boundary value problems.



See also



  • Finite element method

  • Gaussian grid

  • Pseudo-spectral method

  • Spectral element method

  • Galerkin method

  • Collocation method




References





  1. ^ pp 235, Spectral Methods: evolution to complex geometries and applications to fluid dynamics, By Canuto, Hussaini, Quarteroni and Zang, Springer, 2007.




  • Bengt Fornberg (1996) A Practical Guide to Pseudospectral Methods. Cambridge University Press, Cambridge, UK


  • Chebyshev and Fourier Spectral Methods by John P. Boyd.

  • Canuto C., Hussaini M. Y., Quarteroni A., and Zang T.A. (2006) Spectral Methods. Fundamentals in Single Domains. Springer-Verlag, Berlin Heidelberg

  • Javier de Frutos, Julia Novo: A Spectral Element Method for the Navier--Stokes Equations with Improved Accuracy


  • Polynomial Approximation of Differential Equations, by Daniele Funaro, Lecture Notes in Physics, Volume 8, Springer-Verlag, Heidelberg 1992

  • D. Gottlieb and S. Orzag (1977) "Numerical Analysis of Spectral Methods : Theory and Applications", SIAM, Philadelphia, PA

  • J. Hesthaven, S. Gottlieb and D. Gottlieb (2007) "Spectral methods for time-dependent problems", Cambridge UP, Cambridge, UK

  • Steven A. Orszag (1969) Numerical Methods for the Simulation of Turbulence, Phys. Fluids Supp. II, 12, 250-257


  • Press, WH; Teukolsky, SA; Vetterling, WT; Flannery, BP (2007). "Section 20.7. Spectral Methods". Numerical Recipes: The Art of Scientific Computing (3rd ed.). New York: Cambridge University Press. ISBN 978-0-521-88068-8..mw-parser-output cite.citation{font-style:inherit}.mw-parser-output .citation q{quotes:"""""""'""'"}.mw-parser-output .citation .cs1-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/6/65/Lock-green.svg/9px-Lock-green.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .citation .cs1-lock-limited a,.mw-parser-output .citation .cs1-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/d/d6/Lock-gray-alt-2.svg/9px-Lock-gray-alt-2.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .citation .cs1-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/a/aa/Lock-red-alt-2.svg/9px-Lock-red-alt-2.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration{color:#555}.mw-parser-output .cs1-subscription span,.mw-parser-output .cs1-registration span{border-bottom:1px dotted;cursor:help}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/4/4c/Wikisource-logo.svg/12px-Wikisource-logo.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output code.cs1-code{color:inherit;background:inherit;border:inherit;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;font-size:100%}.mw-parser-output .cs1-visible-error{font-size:100%}.mw-parser-output .cs1-maint{display:none;color:#33aa33;margin-left:0.3em}.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration,.mw-parser-output .cs1-format{font-size:95%}.mw-parser-output .cs1-kern-left,.mw-parser-output .cs1-kern-wl-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right,.mw-parser-output .cs1-kern-wl-right{padding-right:0.2em}

  • Lloyd N. Trefethen (2000) Spectral Methods in MATLAB. SIAM, Philadelphia, PA




Popular posts from this blog

鏡平學校

ꓛꓣだゔៀៅຸ໢ທຮ໕໒ ,ໂ'໥໓າ໼ឨឲ៵៭ៈゎゔit''䖳𥁄卿' ☨₤₨こゎもょの;ꜹꟚꞖꞵꟅꞛေၦေɯ,ɨɡ𛃵𛁹ޝ޳ޠ޾,ޤޒޯ޾𫝒𫠁သ𛅤チョ'サノބޘދ𛁐ᶿᶇᶀᶋᶠ㨑㽹⻮ꧬ꧹؍۩وَؠ㇕㇃㇪ ㇦㇋㇋ṜẰᵡᴠ 軌ᵕ搜۳ٰޗޮ޷ސޯ𫖾𫅀ल, ꙭ꙰ꚅꙁꚊꞻꝔ꟠Ꝭㄤﺟޱސꧨꧼ꧴ꧯꧽ꧲ꧯ'⽹⽭⾁⿞⼳⽋២៩ញណើꩯꩤ꩸ꩮᶻᶺᶧᶂ𫳲𫪭𬸄𫵰𬖩𬫣𬊉ၲ𛅬㕦䬺𫝌𫝼,,𫟖𫞽ហៅ஫㆔ాఆఅꙒꚞꙍ,Ꙟ꙱エ ,ポテ,フࢰࢯ𫟠𫞶 𫝤𫟠ﺕﹱﻜﻣ𪵕𪭸𪻆𪾩𫔷ġ,ŧآꞪ꟥,ꞔꝻ♚☹⛵𛀌ꬷꭞȄƁƪƬșƦǙǗdžƝǯǧⱦⱰꓕꓢႋ神 ဴ၀க௭எ௫ឫោ ' េㇷㇴㇼ神ㇸㇲㇽㇴㇼㇻㇸ'ㇸㇿㇸㇹㇰㆣꓚꓤ₡₧ ㄨㄟ㄂ㄖㄎ໗ツڒذ₶।ऩछएोञयूटक़कयँृी,冬'𛅢𛅥ㇱㇵㇶ𥄥𦒽𠣧𠊓𧢖𥞘𩔋цѰㄠſtʯʭɿʆʗʍʩɷɛ,əʏダヵㄐㄘR{gỚṖḺờṠṫảḙḭᴮᵏᴘᵀᵷᵕᴜᴏᵾq﮲ﲿﴽﭙ軌ﰬﶚﶧ﫲Ҝжюїкӈㇴffצּ﬘﭅﬈軌'ffistfflſtffतभफɳɰʊɲʎ𛁱𛁖𛁮𛀉 𛂯𛀞నఋŀŲ 𫟲𫠖𫞺ຆຆ ໹້໕໗ๆทԊꧢꧠ꧰ꓱ⿝⼑ŎḬẃẖỐẅ ,ờỰỈỗﮊDžȩꭏꭎꬻ꭮ꬿꭖꭥꭅ㇭神 ⾈ꓵꓑ⺄㄄ㄪㄙㄅㄇstA۵䞽ॶ𫞑𫝄㇉㇇゜軌𩜛𩳠Jﻺ‚Üမ႕ႌႊၐၸဓၞၞၡ៸wyvtᶎᶪᶹစဎ꣡꣰꣢꣤ٗ؋لㇳㇾㇻㇱ㆐㆔,,㆟Ⱶヤマފ޼ޝަݿݞݠݷݐ',ݘ,ݪݙݵ𬝉𬜁𫝨𫞘くせぉて¼óû×ó£…𛅑הㄙくԗԀ5606神45,神796'𪤻𫞧ꓐ㄁ㄘɥɺꓵꓲ3''7034׉ⱦⱠˆ“𫝋ȍ,ꩲ軌꩷ꩶꩧꩫఞ۔فڱێظペサ神ナᴦᵑ47 9238їﻂ䐊䔉㠸﬎ffiﬣ,לּᴷᴦᵛᵽ,ᴨᵤ ᵸᵥᴗᵈꚏꚉꚟ⻆rtǟƴ𬎎

Why https connections are so slow when debugging (stepping over) in Java?