Dodecaborate






dodecaborate ion


The dodecaborate(12) anion, [B12H12]2-, has the structure of a regular icosahedron of boron atoms, with each boron atom being attached to a hydrogen atom. Its symmetry is classified by the molecular point group Ih.




Contents






  • 1 Synthesis and reactions


  • 2 Substituted derivatives


  • 3 Potential applications


  • 4 References





Synthesis and reactions


The existence of the dodecaborate(12) anion, [B12H12]2-, was predicted by H. C. Longuet-Higgins and M. de V. Roberts in 1955.[1] Hawthorne and Pitochelli first made it 5 years later, by the reaction of iododecarborane with triethylamine in benzene solution at 80 °C.[2] It is more conveniently prepared in two steps from sodium borohydride. First the borohydride is converted into a triborate anion using the etherate of boron trifluoride:


5 NaBH4 + BF3 → 2 NaB3H8 + 3 NaF + 2 H2

Pyrolysis of the triborate gives the twelve boron cluster as the sodium salt.[3] A variety of other synthetic methods have been published.


Salts of the dodecaborate ion are stable in air and do not react with hot aqueous sodium hydroxide or hydrochloric acid. The anion can be electrochemically oxidised to [B24H23]3−.[4]



Substituted derivatives


Salts of B12H2−
12
undergo hydroxylation with hydrogen peroxide to give salts of [B12(OH)12]2−.[5] The hydrogen atoms in the ion [B12H12]2- can be replaced by the halogens with various degrees of substitution. The following numbering scheme is used to identify the products. The first boron atom is numbered 1, then the closest ring of five atoms around it is numbered anticlockwise from 2 to 6. The next ring of boron atoms is started from 7 for the atoms closest to number 2 and 3, and counts anticlockwise to 11. The atom opposite the original is numbered 12. A related derivative is [B12(CH3)12]2−. The icosahedron of boron atoms is aromatic in nature.[citation needed]


Under kilobar pressure of carbon monoxide [B12H12]2− reacts to form the carbonyl derivatives [B12H11CO] and the 1,12- and 1,7-isomers of B12H10(CO)2. The para disubstitution at the 1,12 is unusual. In water the dicarbonyls appear to form carboxylic ions: [B12H10(CO)CO2H] and [B12H10(CO2H)2]2−.[citation needed]



Potential applications


Although derivatives of [B12H12]2− have not found any practical or commercial applications, the unusual nature of this dianion has attracted repeated investigations.


Compounds based on the ion [B12H12]2− have been evaluated for solvent extraction of the radioactive ions 152Eu3+ and 241Am3+.[6]


[B12H12]2−, [B12(OH)12]2− and [B12(OMe)12]2− show promise for use in drug delivery. They form "closomers," which have been used to make nontargeted high-performance MRI contrast agents which are persistent in tumor tissue.[7]


Salts of [B12H12]2− are potential therapeutic agents in cancer treatment. For applications in boron neutron capture therapy (BNCT), derivatives of closo-dodecaborate increase the specificity of neutron irradiation treatment. Neutron irradiation converts nonradioactive dodecaborate containing 11B to radioactive 12B, which upon radioactive decay emits an alpha particle near the tumor.[8]



References





  1. ^ Longuet-Higgins, H.C; Roberts, M. de V. (1955). "The electronic structure of an icosahedron of boron atoms". Proc. Roy. Soc. A. 230: 110–119. doi:10.1098/rspa.1955.0115..mw-parser-output cite.citation{font-style:inherit}.mw-parser-output q{quotes:"""""""'""'"}.mw-parser-output code.cs1-code{color:inherit;background:inherit;border:inherit;padding:inherit}.mw-parser-output .cs1-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/6/65/Lock-green.svg/9px-Lock-green.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .cs1-lock-limited a,.mw-parser-output .cs1-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/d/d6/Lock-gray-alt-2.svg/9px-Lock-gray-alt-2.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .cs1-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/a/aa/Lock-red-alt-2.svg/9px-Lock-red-alt-2.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration{color:#555}.mw-parser-output .cs1-subscription span,.mw-parser-output .cs1-registration span{border-bottom:1px dotted;cursor:help}.mw-parser-output .cs1-hidden-error{display:none;font-size:100%}.mw-parser-output .cs1-visible-error{font-size:100%}.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration,.mw-parser-output .cs1-format{font-size:95%}.mw-parser-output .cs1-kern-left,.mw-parser-output .cs1-kern-wl-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right,.mw-parser-output .cs1-kern-wl-right{padding-right:0.2em}


  2. ^ Pitochelli, Anthony R.; Hawthorne, Frederick M. (1960). "The Isolation of Icosahedral B12H2−
    12
    Ion". J. Am. Chem. Soc. 82 (12): 3228–3229. doi:10.1021/ja01497a069.



  3. ^ Miller, H. C.; Muetterties, E. L. (1967). "Borane Anions". Inorganic Syntheses. Inorganic Syntheses. 10: 81–91. doi:10.1002/9780470132418.ch16. ISBN 9780470132418.


  4. ^ Sivaev, Igor B.; Bregadze, Vladimir I.; Sjöberg, Stefan (2002). "Chemistry of closo-Dodecaborate Anion [B12H12]2-: A Review". Collection of Czechoslovak Chemical Communications. 67 (6): 679–727. doi:10.1135/cccc20020679.


  5. ^ Lee, Mark W., Jr.; Safronov, Alexander V.; Jalisatgi, Satish S.; Hawthorne, M. Frederick (2010). "Cesium dodecahydroxy-closo-dodecaborate, Cs2[B12(OH)12]". Inorganic Syntheses. Inorganic Syntheses. 35: 63–66. doi:10.1002/9780470651568.ch2. ISBN 9780470651568.CS1 maint: Multiple names: authors list (link)


  6. ^ Bernard, R., Cornu, D., Gruner, B., Dozol, J., Miele, P., & Bonnetet, B. (2002). Synthesis of [B12H12]2– based extractants and their application for the treatment of nuclear wastes. Journal of Organometallic Chemistry, 83-90.


  7. ^ Bondarev, O.; Khan, A.; Tu, X.; Sevryugina, Y.; Jalisatgi, S.; Hawthorne, M. (2013). "Synthesis of [closo-B12(OH)11NH3]–: A New Heterobifunctional Dodecaborane Scaffold for Drug Delivery Applications". Journal of the American Chemical Society. 135 (35): 13204–13211. doi:10.1021/ja4069613.


  8. ^ Tachikawa, S.; Miyoshi, T.; Koganei, H.; El-Zaria, M.E.; Vinas, C.; Suzuki, M.; Ono, K.; Nakamura, H. (2014). "Spermidinium closo-dodecaborate-encapsulating liposomes as efficient boron delivery vehicles for neutron capture therapy". Chemical Communications. 50 (82): 12325–12328. doi:10.1039/c4cc04344h.









Popular posts from this blog

鏡平學校

ꓛꓣだゔៀៅຸ໢ທຮ໕໒ ,ໂ'໥໓າ໼ឨឲ៵៭ៈゎゔit''䖳𥁄卿' ☨₤₨こゎもょの;ꜹꟚꞖꞵꟅꞛေၦေɯ,ɨɡ𛃵𛁹ޝ޳ޠ޾,ޤޒޯ޾𫝒𫠁သ𛅤チョ'サノބޘދ𛁐ᶿᶇᶀᶋᶠ㨑㽹⻮ꧬ꧹؍۩وَؠ㇕㇃㇪ ㇦㇋㇋ṜẰᵡᴠ 軌ᵕ搜۳ٰޗޮ޷ސޯ𫖾𫅀ल, ꙭ꙰ꚅꙁꚊꞻꝔ꟠Ꝭㄤﺟޱސꧨꧼ꧴ꧯꧽ꧲ꧯ'⽹⽭⾁⿞⼳⽋២៩ញណើꩯꩤ꩸ꩮᶻᶺᶧᶂ𫳲𫪭𬸄𫵰𬖩𬫣𬊉ၲ𛅬㕦䬺𫝌𫝼,,𫟖𫞽ហៅ஫㆔ాఆఅꙒꚞꙍ,Ꙟ꙱エ ,ポテ,フࢰࢯ𫟠𫞶 𫝤𫟠ﺕﹱﻜﻣ𪵕𪭸𪻆𪾩𫔷ġ,ŧآꞪ꟥,ꞔꝻ♚☹⛵𛀌ꬷꭞȄƁƪƬșƦǙǗdžƝǯǧⱦⱰꓕꓢႋ神 ဴ၀க௭எ௫ឫោ ' េㇷㇴㇼ神ㇸㇲㇽㇴㇼㇻㇸ'ㇸㇿㇸㇹㇰㆣꓚꓤ₡₧ ㄨㄟ㄂ㄖㄎ໗ツڒذ₶।ऩछएोञयूटक़कयँृी,冬'𛅢𛅥ㇱㇵㇶ𥄥𦒽𠣧𠊓𧢖𥞘𩔋цѰㄠſtʯʭɿʆʗʍʩɷɛ,əʏダヵㄐㄘR{gỚṖḺờṠṫảḙḭᴮᵏᴘᵀᵷᵕᴜᴏᵾq﮲ﲿﴽﭙ軌ﰬﶚﶧ﫲Ҝжюїкӈㇴffצּ﬘﭅﬈軌'ffistfflſtffतभफɳɰʊɲʎ𛁱𛁖𛁮𛀉 𛂯𛀞నఋŀŲ 𫟲𫠖𫞺ຆຆ ໹້໕໗ๆทԊꧢꧠ꧰ꓱ⿝⼑ŎḬẃẖỐẅ ,ờỰỈỗﮊDžȩꭏꭎꬻ꭮ꬿꭖꭥꭅ㇭神 ⾈ꓵꓑ⺄㄄ㄪㄙㄅㄇstA۵䞽ॶ𫞑𫝄㇉㇇゜軌𩜛𩳠Jﻺ‚Üမ႕ႌႊၐၸဓၞၞၡ៸wyvtᶎᶪᶹစဎ꣡꣰꣢꣤ٗ؋لㇳㇾㇻㇱ㆐㆔,,㆟Ⱶヤマފ޼ޝަݿݞݠݷݐ',ݘ,ݪݙݵ𬝉𬜁𫝨𫞘くせぉて¼óû×ó£…𛅑הㄙくԗԀ5606神45,神796'𪤻𫞧ꓐ㄁ㄘɥɺꓵꓲ3''7034׉ⱦⱠˆ“𫝋ȍ,ꩲ軌꩷ꩶꩧꩫఞ۔فڱێظペサ神ナᴦᵑ47 9238їﻂ䐊䔉㠸﬎ffiﬣ,לּᴷᴦᵛᵽ,ᴨᵤ ᵸᵥᴗᵈꚏꚉꚟ⻆rtǟƴ𬎎

Why https connections are so slow when debugging (stepping over) in Java?