Linear function




In mathematics, the term linear function refers to two distinct but related notions:[1]



  • In calculus and related areas, a linear function is a function whose graph is a straight line, that is a polynomial function of degree at most one.[2]

  • In linear algebra, mathematical analysis[3], and functional analysis, a linear function is a linear map.[4] In this case, and in case of possible ambiguity, the name affine function is often used for the concept above.[5]




Contents






  • 1 As a polynomial function


  • 2 As a linear map


  • 3 See also


  • 4 Notes


  • 5 References


  • 6 External links





As a polynomial function





Graphs of two linear (polynomial) functions.


In calculus, analytic geometry and related areas, a linear function is a polynomial of degree one or less, including the zero polynomial (the latter not being considered to have degree zero).


When the function is of only one variable, it is of the form


f(x)=ax+b,{displaystyle f(x)=ax+b,}f(x)=ax+b,

where a and b are constants, often real numbers. The graph of such a function of one variable is a nonvertical line. a is frequently referred to as the slope of the line, and b as the intercept.


For a function f(x1,…,xk){displaystyle f(x_{1},ldots ,x_{k})}f(x_{1},ldots ,x_{k}) of any finite number of independent variables, the general formula is



f(x1,…,xk)=b+a1x1+…+akxk{displaystyle f(x_{1},ldots ,x_{k})=b+a_{1}x_{1}+ldots +a_{k}x_{k}}f(x_{1},ldots ,x_{k})=b+a_{1}x_{1}+ldots +a_{k}x_{k},

and the graph is a hyperplane of dimension k.


A constant function is also considered linear in this context, as it is a polynomial of degree zero or is the zero polynomial. Its graph, when there is only one independent variable, is a horizontal line.


In this context, the other meaning (a linear map) may be referred to as a homogeneous linear function or a linear form. In the context of linear algebra, this meaning (polynomial functions of degree 0 or 1) is a special kind of affine map.



As a linear map





The integral of a function is a linear map from the vector space of integrable functions to the real numbers.


In linear algebra, a linear function is a map f between two vector spaces that preserves vector addition and scalar multiplication:



f(x+y)=f(x)+f(y){displaystyle f(mathbf {x} +mathbf {y} )=f(mathbf {x} )+f(mathbf {y} )}f(mathbf {x} +mathbf {y} )=f(mathbf {x} )+f(mathbf {y} )

f(ax)=af(x).{displaystyle f(amathbf {x} )=af(mathbf {x} ).}f(amathbf {x} )=af(mathbf {x} ).


Here a denotes a constant belonging to some field K of scalars (for example, the real numbers) and x and y are elements of a vector space, which might be K itself.


Some authors use "linear function" only for linear maps that take values in the scalar field;[6] these are also called linear functionals.


The "linear functions" of calculus qualify as "linear maps" when (and only when) f([0,…,0])=0{displaystyle f([0,ldots ,0])=0}{displaystyle f([0,ldots ,0])=0}, or, equivalently, when the constant b=0{displaystyle b=0}b=0. Geometrically, the graph of the function must pass through the origin.



See also



  • Homogeneous function

  • Nonlinear system

  • Piecewise linear function

  • Linear interpolation

  • Discontinuous linear map



Notes




  1. ^ "The term linear function means a linear form in some textbooks and an affine function in others." Vaserstein 2006, p. 50-1


  2. ^ Stewart 2012, p. 23


  3. ^ T. M. Apostol (1981). Mathematical Analysis. Addison-Wesley. p. 345..mw-parser-output cite.citation{font-style:inherit}.mw-parser-output q{quotes:"""""""'""'"}.mw-parser-output code.cs1-code{color:inherit;background:inherit;border:inherit;padding:inherit}.mw-parser-output .cs1-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/6/65/Lock-green.svg/9px-Lock-green.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .cs1-lock-limited a,.mw-parser-output .cs1-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/d/d6/Lock-gray-alt-2.svg/9px-Lock-gray-alt-2.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .cs1-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/a/aa/Lock-red-alt-2.svg/9px-Lock-red-alt-2.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration{color:#555}.mw-parser-output .cs1-subscription span,.mw-parser-output .cs1-registration span{border-bottom:1px dotted;cursor:help}.mw-parser-output .cs1-hidden-error{display:none;font-size:100%}.mw-parser-output .cs1-visible-error{font-size:100%}.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration,.mw-parser-output .cs1-format{font-size:95%}.mw-parser-output .cs1-kern-left,.mw-parser-output .cs1-kern-wl-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right,.mw-parser-output .cs1-kern-wl-right{padding-right:0.2em}


  4. ^ Shores 2007, p. 71


  5. ^ A. Kurosh (1975). Higher Algebra. Mir Publishers. p. 214.


  6. ^ Gelfand 1961



References



  • Izrail Moiseevich Gelfand (1961), Lectures on Linear Algebra, Interscience Publishers, Inc., New York. Reprinted by Dover, 1989.
    ISBN 0-486-66082-6

  • Thomas S. Shores (2007), Applied Linear Algebra and Matrix Analysis, Undergraduate Texts in Mathematics, Springer.
    ISBN 0-387-33195-6

  • James Stewart (2012), Calculus: Early Transcendentals, edition 7E, Brooks/Cole.
    ISBN 978-0-538-49790-9

  • Leonid N. Vaserstein (2006), "Linear Programming", in Leslie Hogben, ed., Handbook of Linear Algebra, Discrete Mathematics and Its Applications, Chapman and Hall/CRC, chap. 50.
    ISBN 1-584-88510-6



External links









Popular posts from this blog

鏡平學校

ꓛꓣだゔៀៅຸ໢ທຮ໕໒ ,ໂ'໥໓າ໼ឨឲ៵៭ៈゎゔit''䖳𥁄卿' ☨₤₨こゎもょの;ꜹꟚꞖꞵꟅꞛေၦေɯ,ɨɡ𛃵𛁹ޝ޳ޠ޾,ޤޒޯ޾𫝒𫠁သ𛅤チョ'サノބޘދ𛁐ᶿᶇᶀᶋᶠ㨑㽹⻮ꧬ꧹؍۩وَؠ㇕㇃㇪ ㇦㇋㇋ṜẰᵡᴠ 軌ᵕ搜۳ٰޗޮ޷ސޯ𫖾𫅀ल, ꙭ꙰ꚅꙁꚊꞻꝔ꟠Ꝭㄤﺟޱސꧨꧼ꧴ꧯꧽ꧲ꧯ'⽹⽭⾁⿞⼳⽋២៩ញណើꩯꩤ꩸ꩮᶻᶺᶧᶂ𫳲𫪭𬸄𫵰𬖩𬫣𬊉ၲ𛅬㕦䬺𫝌𫝼,,𫟖𫞽ហៅ஫㆔ాఆఅꙒꚞꙍ,Ꙟ꙱エ ,ポテ,フࢰࢯ𫟠𫞶 𫝤𫟠ﺕﹱﻜﻣ𪵕𪭸𪻆𪾩𫔷ġ,ŧآꞪ꟥,ꞔꝻ♚☹⛵𛀌ꬷꭞȄƁƪƬșƦǙǗdžƝǯǧⱦⱰꓕꓢႋ神 ဴ၀க௭எ௫ឫោ ' េㇷㇴㇼ神ㇸㇲㇽㇴㇼㇻㇸ'ㇸㇿㇸㇹㇰㆣꓚꓤ₡₧ ㄨㄟ㄂ㄖㄎ໗ツڒذ₶।ऩछएोञयूटक़कयँृी,冬'𛅢𛅥ㇱㇵㇶ𥄥𦒽𠣧𠊓𧢖𥞘𩔋цѰㄠſtʯʭɿʆʗʍʩɷɛ,əʏダヵㄐㄘR{gỚṖḺờṠṫảḙḭᴮᵏᴘᵀᵷᵕᴜᴏᵾq﮲ﲿﴽﭙ軌ﰬﶚﶧ﫲Ҝжюїкӈㇴffצּ﬘﭅﬈軌'ffistfflſtffतभफɳɰʊɲʎ𛁱𛁖𛁮𛀉 𛂯𛀞నఋŀŲ 𫟲𫠖𫞺ຆຆ ໹້໕໗ๆทԊꧢꧠ꧰ꓱ⿝⼑ŎḬẃẖỐẅ ,ờỰỈỗﮊDžȩꭏꭎꬻ꭮ꬿꭖꭥꭅ㇭神 ⾈ꓵꓑ⺄㄄ㄪㄙㄅㄇstA۵䞽ॶ𫞑𫝄㇉㇇゜軌𩜛𩳠Jﻺ‚Üမ႕ႌႊၐၸဓၞၞၡ៸wyvtᶎᶪᶹစဎ꣡꣰꣢꣤ٗ؋لㇳㇾㇻㇱ㆐㆔,,㆟Ⱶヤマފ޼ޝަݿݞݠݷݐ',ݘ,ݪݙݵ𬝉𬜁𫝨𫞘くせぉて¼óû×ó£…𛅑הㄙくԗԀ5606神45,神796'𪤻𫞧ꓐ㄁ㄘɥɺꓵꓲ3''7034׉ⱦⱠˆ“𫝋ȍ,ꩲ軌꩷ꩶꩧꩫఞ۔فڱێظペサ神ナᴦᵑ47 9238їﻂ䐊䔉㠸﬎ffiﬣ,לּᴷᴦᵛᵽ,ᴨᵤ ᵸᵥᴗᵈꚏꚉꚟ⻆rtǟƴ𬎎

Why https connections are so slow when debugging (stepping over) in Java?